
AST 4001 University of Minnesota Spetember 30, 2008

Homework Set 2
Due: October 7, 2008, before class

1. Energy Generation

A table of mass excess is given at
http://webusers.physics.umn.edu/∼alex/stellarevolution/AST-4001/homework/mass table.txt
The table lists in each line Z, A, and mass excess per nucleus in MeV.

(a) Compute the mass excess and binding energy (per nucleon).
Which is the most tightly bound nucleus (binding energy per nucleon) and which
has the highest mass excess per nucleon?
The nucleus with the highest total mass excess in the Table is 338No.
The nucleus with the highest mass excess per nucleon is the neutron, but that with the lowest
mass excess per nucleon is 56Fe. It is the most stable nucleus.

BE = ME(p)× np + ME(n)× nn −ME(nucleus)

The nucleus with the highest total binding energy listed is 339126 (unbihexium), but the one with
the highest binding energy per nucleon is 52Cr, followed by 56Fe and 62Ni. Score: 4+2

(b) For the conditions in the center of the sun, central T about 1.6×107 K,
central density about 160 g cm−3, find for the reaction 3He + 3He → 4He + 1H + 1H the
reaction rate at
http://www.phy.ornl.gov/astrophysics/data/cf88/nuclei.html;
and then determine the nuclear energy generation rate from the mass excess of the
nuclei.
The tabulated value is 6.45×10−10. mass excesses are:
1H: 7.28897 MeV,
3He: 14.9312 MeV
4He: 2.42492 MeV
Per reaction we release
(2× 14.9312− 2× 7.28897− 2.42492) MeV = 12.85954 MeV
The reaction rate is proportional to ρ2 and Y 2

3He and hence given by
r = 1

26.45×10−10 × 160× Y 2
3He.

The nuclear energy generation rate is then

ε = 12.85942 MeV × 5.16×10−8/s NA Y 2
3He = 6.4×1011 erg/s/g Y 2

3He

Score: 6
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2. Stars and Heat

(a) Assume an ideal gas and an average temperature of for a hydrostatic stars (Prialnik, Chapter
2.4).
Determine the heat capacity, C, of star,

C =
dE

dT̄

From the Virial Theorem we use that E = −U . From Prialnik equation 2.28 we use

U =
3kB

2mg
T̄M

Hence we have
C = − 3kB

2mg
M

That is, a negative heat capacity! Score: 4

(b) How does this change for an ideal gas with radiation, assuming constant β?
Following Prialnik exercise 3.2 we have

E = − β

2− β
U .

The internal heat is
U =

3
2
(2− β)

1
mg

T̄M

and hence
C = −β

3kB

2mg
M

That is, for gas with radiation the absolute value of the heat capacity decreases. Score: 4

(c) What happens if you “cover” the star (no radiation is allowed to escape from the
surface) and assume nuclear burning would continue at a constant specific rate.
The total energy of the star would increase – its absolute value would decrease – and therefore,
because of the negative heat capacity, the temperature would decrease. Score: 4
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3. Stellar Stability

For and ideal gas with radiation, the condition for local stability is given by(
d ln T

d ln P

)
s

<

(
d ln T

d ln P

)
e

+
ϕ

δ

(
d ln µ

d ln P

)
s

where the index “s” refers to the stratification in the surroundings, “e” to that of an adiabatically
displaced element that does not mix with it surroundings and remains fully ionized.

δ := −
(

∂ ln ρ

∂ ln T

)
P,µ

, ϕ =
(

∂ ln ρ

∂ ln µ

)
P,T

(a) How does this relation simplify if there is no composition gradient?(
d ln T

d ln P

)
s

<

(
d ln T

d ln P

)
e

Score: 2

(b) Derive a similar relation for a prefect non-relativistic completely degenerate gas.
Hint: in this case the EOS does not depend on µ, but on ...
... mean molecular weight per electron, µe

We obtain

δ

(
d ln T

d ln P

)
s

< δ

(
d ln T

d ln P

)
e

+ ϕ

(
d ln µe

d ln P

)
s

with

ϕ =
(

∂ ln ρ

∂ ln µe

)
P,T

and

δ := −
(

∂ ln ρ

∂ ln T

)
P,µe

In the next subquestion we will see that actually δ = 0 and hence

0 < ϕ

(
d ln µe

d ln P

)
s

Score: 4+2

(c) Compute δ and ϕ for the above case.
From equation 3.33 of Prialnik we have

Pe,deg =
h2

20me

(
3
π

)2/3

m
−5/3
H

(
ρ

µe

)5/3

Since for constant P here ρ is independent of T we have

δ := −
(

∂ ln ρ

∂ ln T

)
P,µe

= 0

Also, for a given P here ρ is proportional to µe and therefore

ϕ =
(

∂ ln ρ

∂ ln µe

)
P,T

= 1

Score: 4
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4. The Eddington Limit

The Eddington limit is reached when, at the surface of the star, the acceleration due to the radiation
pressure gradient balances gravitational acceleration.

(a) Derive the Eddington Luminosity based on this statement.
The radiation pressure is given by Prad = a

3T 4, hence its gradient is

dP

dr
=

4a

3
T 3 dT

dr

The temperature gradient is given by (Prialnik 3.69)

dT

dr
= − 3κL

4acT 34πr2

and we get
dP

dr
= − κρL

4πr2c

Comparing this to the gravitational acceleration, (force per unit volume)

dP

dr
= −ρ

GM

r2

and solving for L we obtain

Ledd =
4πcGM

κ

Score: 4

(b) For a mixture of hydrogen and helium, the electron scattering opacity is given by

κes = (1 + X)× 0.2 cm2/g

where X is the hydrogen mass fraction. For the sun X is about 70 % at the surface.
Assuming the opacity at the surface of the sun where just due to electron scattering,
compute the Eddington Luminosity of the sun.

Ledd,¯ =
4πcGM¯

(1 + 0.7)× 0.2 cm2/g
=

4πcGM¯

0.34 cm2/g
= 5×1037/0.34 erg s−1

. . . = 1.47×1038 erg s−1 = 1.47×1031 W = 3.84×104 L¯

Score: 2

(c) Based on last week’s homework assignment, what is the Eddington luminosity of a
human and how does it compare to the assumed “luminosity”?
M = 100 kg = 1×105 g, hydrogen mass fraction is 10 % and we assume just electron scattering,
though surely not realistic

Ledd,¯ =
4πcG 105 g

(1 + 0.1)× 0.2 cm2/g
=

4πcG 105 g

0.22 cm2/g
= 1.1×1010erg s−1

This is to be compared to 100 W= 109 erg s−1. Humans “shine” at about 10 % Eddington lumi-
nosity (only considering electron scattering opacity).

Score: 2
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(d) If, very naively, one assumed a star did not deform due to rapid rotation, how is the
Eddington limit (luminosity) modified, at the equator, for a rotating star?
One has to take into account the centrifugal force, ω2r which effectively reduces gravity. Here
ω is the angular velocity of the stellar rotation. Hence the “effective” Eddington luminosity is
reduced.
If we replace in the above derivation

−ρ
GM

r2

by

ρ

(
−GM

r2
+ ω2r

)
and define the ratio of centrifugal force to gravitational acceleration at the equator as

Ω = ω2r

(
GM

r2

)−1

=
ω2r3

GM

we obtain a “modified Eddington Limit”

Ledd =
4πcGM

κ
(1− Ω) .

Score: 6

(e) What happens at the pole?
In this simple approximation nothing happens at the pole.
(Eventually deformation of the star will have an effect on the pole as well.) Score: 2

(f) If a star cannot exceed the Eddington Luminosity corrected for centrifugal force at
the equator (above question and assumptions), derive a maximum rotation rate for
the star.
The maximum velocity is reached when Ω = 1. Therefore the maximum rotation rate is

ω =
√

GM/r3

Score: 4
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5. Convection

Assume a chemically homogeneous convection zone of thickness rc and ideal gas. A bubble with
temperature excess ∆T . Assume the bubble has an initial velocity of zero, then starts rising and
maintains a constant ∆T/T (adiabatic stratification and adiabatic expansion of the bubble). The
bottom of the convection zone is at R0. Assume there is no drag. Neglect the mass in the convection
zone.

(a) Assume R0 À rc (plane parallel approximation).
Compute the time average velocity of the bubble.
Gravitational acceleration g is constant in this approximation.
The density perturbation is given by

∆ρ

ρ
= −δ

∆T

T

The acceleration a due to buoyancy is given by

a = −g
∆ρ

ρ
= gδ

∆T

T

We also use the equations of motion for constant acceleration

v(t) = at , r(t) =
1
2
at2

The time τ for a bubble to reach the top is then given by

τ =
√

2rc/a

And the time average velocity by

〈v〉t =
∫ τ

0

v(t)dt/

∫ τ

0

dt =
1
2
aτ2/τ =

1
2
aτ =

√
arc/2 =

√
rcgδ

∆T

2T

Alternatively one could also argue that for constant acceleration the average velocity is just half
of the velocity at the top (aτ) and hence obtain 〈v〉t = 1

2aτ this way. Or, even easier, that it is
distance divided by the time required to reach the top, 〈v〉t = rc/τ =

√
arc/2.

For an ideal gas δ = 1.

Score: 8

(b) Compute the spatial average velocity of the bubble.
From the above equations the time to reach a distance r is given by

t(r) =
√

2rc/a

Using this we can now compute the velocity as a function or time

v(r) = v(t(r)) = a
√

2rc/a =
√

2arc

The spatial average velocity is then given by

〈v〉r =
∫ rc

0

√
2arcdr/

∫ rc

0

dr =
√

2a
2
3
r3/2
c /rc =

2
3
√

2arc =
4
3
〈v〉t =

4
3

√
rcgδ

∆T

2T
=

√
rcgδ

8∆T

9T

Score: 4
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(c) Now assume that R0 = 1R¯, rc = 1000R¯ (point mass - red supergiant).
Compute the time average velocity of the bubble.
This can be solved analytically. If you evaluate the integral numerically, please document how it
was done.
This is best solved from the energy equation taking into account buoyancy.
At the bottom we have a specific energy and acceleration of the bubble of

E0 = −GM

R0
δ
∆T

T
, a0 =

GM

R2
0

δ
∆T

T

where M is the mass of the star. As before, the mass in the envelope is neglected. Further out in
the star we have

E(r) = −GM

r
δ
∆T

T
= E0

R0

r

The energy difference E(r) − E0 has to be equal to the specific kinetic energy v2/2 and we can
solve for v(r):

v(r) =
√

2 (E(r)− E0) =
dr

dt

We now do a variable separation and solve for the time to reach the top

τ =
∫ τ

0

dt =
∫ R0+rc

R0

1√
2 (E(r)− E0)

dr =
1√
−2E0

∫ R0+rc

R0

1√(
1− R0

r

)dr

(Note that E0 is less than 0.) Introducing ξ = r/R0 we can write

τ =
R0√
−2E0

∫ ξ1

ξ0

1√
(1− 1/ξ)

dξ =
R0√
−2E0

∫ ξ1

ξ0

√
ξ

ξ − 1
dξ

with ξ0 = 1, ξ1 = (R0 + rc)/R0 = 1001. Using∫ √
x

a + x
dx =

√
x(a + x)− a ln

(√
x +

√
x + a

)
+ C

with a = −1, x = ξ and our integration boundaries we obtain for the integral∫ ξ1

ξ0

√
ξ

ξ − 1
dξ =

[√
ξ(ξ − 1) + ln

(√
ξ +

√
ξ − 1

)]ξ1

ξ0

. . . =
[√

ξ(ξ − 1) + ln
(√

ξ +
√

ξ − 1
)]1001

1

. . . =
√

1001000−
√

0 + ln
(√

1001 +
√

1000
)
− ln (1)

. . . =
√

1001000 + ln
(√

1001 +
√

1000
)

. . . = 1000.5 + 4.147 = 1003.647

And hence
τ = 1004.647

R0√
−2E0

= 710.393
R0√
−E0

The average velocity is then

〈v〉t =
rc

τ
=

1000
710.393

√
−E0 = 1.408

√
−E0 = 1.408

√
GM

R0
δ
∆T

T
≈

√
2a0R0

Score: 12
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