AST 4001 University of Minnesota October 28, 2008

Homework Set 4

Due: November 4, 2008, before class

1. Initial Mass Function
The number of stars in a mass bin [M, M + dM] can be written defining the birth function ®(M):

dN = &(M)dM

The mass of stars in a mass bin is then given by weighing by mass M, defining the initial mass function
(IMF) £(M):
&(M)= MdN/dM

Salpeter (1955) found observationally a power law for @, &:

O(M) oc M~ &(M) oc M~15°

As a lower mass limit for stars (start of hydrostatic hydrogen burning) usually a value of 0.08 Mg, is
assumed. Further, assume that stars above 9 Mg make supernovae, below that they make white dwarfs.
Stars below 7.5 Mg make CO white dwarfs. Further, assume that massive stars above 25 Mg make
black holes, below that they make neutron stars. A conservative upper mass limit for present-day stars
may be around 150 Mg. Stars below 2 Mg, are considered low-mass stars.

(a) Based on these relations and parameters, what fraction of stars make supernovae?
Total number of stars between My and Mj:

M,

1 M 1
N=C S(M)YAM = C—— [M~35] " = 0 ——— (M135 — p135
Mo ) 135 | Sty = € 155 (M o)

L= C% (M(;l.35 _ Mf1.35) x (]\/[(;155 o ]V[f155)

where C'is an arbitrary constant to scale to the actual number of stars. The total number of stars
(defining C" = C'/(1.35 M "3%)):

N =’ ((0.08)7 "% — (150)~"%) = €”(30.25718478 — 0.00115419) = C” x 30.25603059
number of stars that make supernovae

Ngn =€ ((9)712% — (150) %) = €’ x (0.05149590 — 0.00115419) = C’ x 0.05034171
Fraction of stars that make supernovae

Nsn/N = 0.05034171/30.25603059 = 1.66x 102 = 0.166 %

(b) What fraction of supernovae come from stars in the mass range 9-10 solar masses?
Number of stars in the 9...10 Mg mass range:

Nog_10=C"((9)7"% — (10)"%) = C" x (0.05149590 — 0.04466836) = C’ x 0.00682754

Ny_10/Nsn = 0.00682754,/0.05034171 = 0.1356 = 13.56 %



(¢c) What fractions of stars make CO white dwarfs, make NeMgO white dwarfs, neutron
stars, and black holes?

Nco = C'((0.08) 1% — (7.5)713%) = €’ x (30.2572 — 0.06586691) = C” x 30.1913
Nco/N = 0.997861 = 99.79 %
Nxemgo = C’ ((7.5)71 — (9)71%) = €’ x (0.06586691 — 0.05149590) = C’ x 0.01437101
Nxemgo/N = 4.750x10™* = 0.05 %
Nxs = C" ((9)71° — (25)71%%) = €’ x (0.05149590 — 0.01296525) = C’ x 0.03853064
Nns/N =1.273x107% ~ 0.1%
Npg = C’ ((25)7"% — (150)7'3%) = C’ x (0.01296525 — 0.00115419) = C” x 0.01811064
Npu/N = 3.903x10™* ~ 0.04 %
Score: 8

(d) Compare the mass that goes in massive stars, intermediate mass stars, and low-mass
stars.

Total mass of stars between My and M;:
M, 1

1 M
N=D MYAM = D———— [M7935]" = p—— (M7035 — pg 035
Mo §M) 035 | Jas, = D35 (M o)

1 - Y - -
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where D is an arbitrary constant to scale to the actual total mass of stars. Defining D’ =
D/(0.35Mg3%) one obtains

Mopassive = D' ((9)7%%% — (150)7°%) = D' x (0.45346306 — 0.17312830) = D’ x 0.2903

Mintermediate = D' ((2)7%% — (9)7%%%) = D’ x (0.78458410 — 0.45346306) = D' x 0.3311
Miow—mass = D' ((0.08)7%% — (2)793%) = D’ x (2.42057478 — 0.78458410) = D’ x 1.6360

Hence the ratio of mass that goes into these different stellar mass regime is given by
Miassive © Mintermediate © Miow—mass = 0.2903 : 0.3311 : 1.6360 ~ 0.1292 : 0.1429 : 0.7279
Score: 8

2. Cluster Ages

If the lifetime of a star is approximated from assuming it burns up half of its fuel, an 25
solar mass stars lives about 107 yr, and L o M?, what are the most massive stars that are
still around after 108 yr?

LxM?, ExM, 7xE/Lx1/M
M _ T25Mg _1O7yr_ 1
25Mo  108yr  108yr 10

Score: 4



3. Lane-Emden Equation

Derive a formula for B, (formula 5.28 of Prialnik) that contains all the n-dependent terms
as a function of M,,, R, and D,,. Check you result with Table 5.1

From the Lane-Emden equation we have

n—1 3—n

(nGyr (GM\" ( R\ * =it
P.= e
1+n \ M, p

Taking this to power n for simplicity, we have

Pn,_ (47TG) G]L[ et i i n+1
¢ T+ \ M, R.) "

We now eliminate R from the Lame-Emden relation for pc,

pe=D

8M 3MD, \?
"4 R3

and obtain

pn_ (4nG) (GM LN BMDL T
< (IT+n)"\ M, R, A7 pc Pe -

Collecting terms we obtain

P = (4%)%G:
(1+n)

3—n  4n

MY M% R,"3(3D,) * pe

and we can write

3 2 3 izn n-3 3—n 1
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with
B = ]\[FTHRWT_Z (3D )B;n,n 1
n — n n n 1+n .

Score: 8

4. Main Sequence

Using the homolgy relation derived for Main-Sequence stars, compare the luminosity of a
star made of pure helium and one made of pure hydrogen. Neglect the fact that nuclear
burning would proceed differently in these stars.

4
F, = ac(,uG) M3

Using

K\ R
we know that L o< F.
We have in principle two things that change:
e mean molecular weight p
e opacity K
The mean molecular weight for fully ionized pure hydrogen is puy = 0.5, for fully ionized pure helium

it is ppe = 4/3. With
F, o< u?



we hence fine that the luminosity of a helium star would be brighter by a factor

4 8 4
(““e> - () — 50.5679
HH 3

We may also consider the change of opacity, here for simplicity assuming pure Thompson electron
scattering,

or 1

1
K= Kes(X) = keso=(1+X) = 2(1—1—X)

2

where X is the hydrogen mass fraction, as usual. Hence for our pure hydrogen star we have ky = Kes o
and for the helium star we have ky = %Iies’o.
If we now consider

F, k™!
we find that the luminosity of the helium star is increased by another factor rkn/kpe = 2 compared to
the hydrogen star, and in total the helium star is brighter by a factor

K 4 8 4
H <””e) _2<> — 101.136.
KHe \ MH 3

Score: 8



