
AST 4001 University of Minnesota October 28, 2008

Homework Set 4
Due: November 4, 2008, before class

1. Initial Mass Function

The number of stars in a mass bin [M,M + dM ] can be written defining the birth function Φ(M):

dN = Φ(M)dM

The mass of stars in a mass bin is then given by weighing by mass M , defining the initial mass function
(IMF) ξ(M):

ξ(M) = MdN/dM

Salpeter (1955) found observationally a power law for Φ, ξ:

Φ(M) ∝ M−2.35 , ξ(M) ∝ M−1.35

As a lower mass limit for stars (start of hydrostatic hydrogen burning) usually a value of 0.08 M¯ is
assumed. Further, assume that stars above 9 M¯ make supernovae, below that they make white dwarfs.
Stars below 7.5 M¯ make CO white dwarfs. Further, assume that massive stars above 25M¯ make
black holes, below that they make neutron stars. A conservative upper mass limit for present-day stars
may be around 150 M¯. Stars below 2 M¯ are considered low-mass stars.

(a) Based on these relations and parameters, what fraction of stars make supernovae?
Total number of stars between M0 and M1:

N = C

∫ M1

M0

Φ(M)dM = C
1

−1.35
[
M−1.35

]M1
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= C

1
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(
M−1.35

1 −M−1.35
0

)
. . . = C

1
1.35

(
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0 −M−1.35
1

)
∝

(
M−1.35

0 −M−1.35
1

)
where C is an arbitrary constant to scale to the actual number of stars. The total number of stars
(defining C ′ = C/(1.35 M¯

1.35)):

N = C ′ ((0.08)−1.35 − (150)−1.35
)

= C ′(30.25718478− 0.00115419) = C ′ × 30.25603059

number of stars that make supernovae

NSN = C ′ ((9)−1.35 − (150)−1.35
)

= C ′ × (0.05149590− 0.00115419) = C ′ × 0.05034171

Fraction of stars that make supernovae

NSN/N = 0.05034171/30.25603059 = 1.66×10−3 = 0.166 %

Score: 4

(b) What fraction of supernovae come from stars in the mass range 9-10 solar masses?
Number of stars in the 9 . . . 10 M¯ mass range:

N9−10 = C ′ ((9)−1.35 − (10)−1.35
)

= C ′ × (0.05149590− 0.04466836) = C ′ × 0.00682754

N9−10/NSN = 0.00682754/0.05034171 = 0.1356 = 13.56 %

Score: 2
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(c) What fractions of stars make CO white dwarfs, make NeMgO white dwarfs, neutron
stars, and black holes?

NCO = C ′ ((0.08)−1.35 − (7.5)−1.35
)

= C ′ × (30.2572− 0.06586691) = C ′ × 30.1913

NCO/N = 0.997861 ≈ 99.79 %

NNeMgO = C ′ ((7.5)−1.35 − (9)−1.35
)

= C ′ × (0.06586691− 0.05149590) = C ′ × 0.01437101

NNeMgO/N = 4.750×10−4 ≈ 0.05 %

NNS = C ′ ((9)−1.35 − (25)−1.35
)

= C ′ × (0.05149590− 0.01296525) = C ′ × 0.03853064

NNS/N = 1.273×10−3 ≈ 0.1 %

NBH = C ′ ((25)−1.35 − (150)−1.35
)

= C ′ × (0.01296525− 0.00115419) = C ′ × 0.01811064

NBH/N = 3.903×10−4 ≈ 0.04 %

Score: 8

(d) Compare the mass that goes in massive stars, intermediate mass stars, and low-mass
stars.
Total mass of stars between M0 and M1:

N = D
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)
where D is an arbitrary constant to scale to the actual total mass of stars. Defining D′ =
D/(0.35 M¯

0.35) one obtains

Mmassive = D′ ((9)−0.35 − (150)−0.35
)

= D′ × (0.45346306− 0.17312830) = D′ × 0.2903

Mintermediate = D′ ((2)−0.35 − (9)−0.35
)

= D′ × (0.78458410− 0.45346306) = D′ × 0.3311

Mlow−mass = D′ ((0.08)−0.35 − (2)−0.35
)

= D′ × (2.42057478− 0.78458410) = D′ × 1.6360

Hence the ratio of mass that goes into these different stellar mass regime is given by

Mmassive : Mintermediate : Mlow−mass = 0.2903 : 0.3311 : 1.6360 ≈ 0.1292 : 0.1429 : 0.7279

Score: 8

2. Cluster Ages

If the lifetime of a star is approximated from assuming it burns up half of its fuel, an 25
solar mass stars lives about 107 yr, and L ∝ M2, what are the most massive stars that are
still around after 108 yr?

L ∝ M2 , E ∝ M , τ ∝ E/L ∝ 1/M

M

25 M¯
=

τ25 M¯

108 yr
=

107 yr

108 yr
=

1
10

⇒ M = 2.5 M¯

Score: 4

2



3. Lane-Emden Equation

Derive a formula for Bn (formula 5.28 of Prialnik) that contains all the n-dependent terms
as a function of Mn, Rn and Dn. Check you result with Table 5.1

From the Lane-Emden equation we have

Pc =
(4πG)

1
n

1 + n

(
GM

Mn

)n−1
n

(
R

Rn

)3−n
n

ρ
n+1

n
c .

Taking this to power n for simplicity, we have

Pn
c =

(4πG)
(1 + n)n

(
GM

Mn

)n−1(
R

Rn

)3−n

ρn+1
c .

We now eliminate R from the Lame-Emden relation for ρc,

ρc = Dn
3M

4πR3
⇒ R =

(
3MDn

4πρc

)1
3

and obtain

Pn
c =

(4πG)
(1 + n)n

(
GM
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)n−1( 1
Rn
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4πρc

)3−n
3
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c .

Collecting terms we obtain
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3 ρ
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3

c

and we can write
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1
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c
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with
Bn = M

1−n
n

n R
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n
n (3Dn)

3−n
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1
1 + n

.

Score: 8

4. Main Sequence

Using the homolgy relation derived for Main-Sequence stars, compare the luminosity of a
star made of pure helium and one made of pure hydrogen. Neglect the fact that nuclear
burning would proceed differently in these stars.

Using

F∗ =
ac

κ

(
µG

R

)4

M3

we know that L ∝ F∗.
We have in principle two things that change:

• mean molecular weight µ

• opacity κ

The mean molecular weight for fully ionized pure hydrogen is µH = 0.5, for fully ionized pure helium
it is µHe = 4/3. With

F∗ ∝ µ4
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we hence fine that the luminosity of a helium star would be brighter by a factor(
µHe

µH

)4

=
(

8
3

)4

= 50.5679

We may also consider the change of opacity, here for simplicity assuming pure Thompson electron
scattering,

κ = κes(X) = κes,0
1
2
(1 + X) =

σT

u

1
2
(1 + X)

where X is the hydrogen mass fraction, as usual. Hence for our pure hydrogen star we have κH = κes,0

and for the helium star we have κH = 1
2κes,0.

If we now consider
F∗ ∝ κ−1

we find that the luminosity of the helium star is increased by another factor κH/κHe = 2 compared to
the hydrogen star, and in total the helium star is brighter by a factor

κH

κHe

(
µHe

µH

)4

= 2
(

8
3

)4

= 101.136 .

Score: 8
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