
AST 4001 University of Minnesota November 12, 2008

Homework Set 5
Due: November 18, 2008, before class

1. White Dwarf Cooling

(a) Following the lecture notes, compute the time scale on which the effective surface
temperature changes.
Assume that radius of the white dwarf does not change.

L = 4πσR2T 4
eff

⇒
d ln L

d ln Teff
= 4

Using the definitions

τcool = − dt

d ln L
=

3
7

R
µICWD

2/7

(
M

L

)5/7

≈ 2.5×106

(
M

M¯

)5/7(
L

L¯

)−5/7

yr

and analogously

τTeff
= − dt

d ln Teff

we obtain
τTeff

= − dt

d ln Teff
= − d ln L

d ln Teff

dt

d ln L
= 4 τcool

τTeff
=

12
7

R
µICWD

2/7

(
M

L

)5/7

≈ 107

(
M

M¯

)5/7(
L

L¯

)−5/7

yr

Score: 2

(b) Compute the time scale on which the core temperature changes.
Similarly, using

L = M CWDT 7/2
c

we have
d ln L

d ln Tc
= 7/2

and therefore
τTc = − dt

d ln Tc
= − d ln L

d ln Tc

dt

d ln L
=

7
2

τcool

τTc =
3
2

R
µICWD

2/7

(
M

L

)5/7

≈ 9×106

(
M

M¯

)5/7(
L

L¯

)−5/7

yr

Score: 2

(c) For the case of transition to a solid, compute the cooling time scale on which the
luminosity changes for the case that specific heat is increased from 3

2 kB/ion to 3 kB/ion.
What is the signature in the WD luminosity function of such a change?
The specific heat capacity is doubled and therefore the cooling time scale becomes twice as long.
The result is a bump in the WD luminosity function. Score: 2
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(d) For the case of a cold solid, assume that the specific heat capacity per ion is D T 3 where D is a
constant.
Compute the cooling time scale on which the luminosity changes for this case.
For the internal energy we then have

UI =
D

µI
MT 3

c

Following the lecture notes step by step we get

• luminosity equals loss in internal energy

L = −dUI

dt
= −D

µI
M

dTc

dt

3

= −3
D

µI
MT 2

c

dTc

dt

• using L ∝ T
7/2
c (recall L = M CWDT

7/2
c ) we can write

L = −6
7

D

µI
M

T 3
c

L

dL

dt
,

dL

dt
= −7

6
µI

D

L2

T 3
c M

• As before, define cooling time as time scale of luminosity drop by e:

τcool = − dt

d ln L
= −L

(
dL

dt

)−1

=
6
7

D

µI

M

L
T 3

c

• eliminating Tc using L/M = CWDT
7/2
c we obtain

τcool =
6
7

D

µICWD
6/7

(
M

L

)1/7

=
6
7

D

µICWDT
1/2
c

Without knowledge of D we cannot go any further. Note that the cooling rate now only very
weakly depends on L; it is almost constant ⇒ Fast cooling! Score: 6

2. Neutron Stars

Assume a non-rotating neutron star of gravitational mass 1.4 M¯ and radius 10 km.

The relativistic gravitational redshift (1 + z) is given by

1 + z = 1
/√

1−Rs/r

where
Rs =

2GM

c2

is the Schwarzschild radius. The relativistic gravitational acceleration is then given by

grel = (1 + z)
GM

r2
=

GM

r2
√

1− 2GM/(c2 r)
.

(a) Compute, in classical approximation, the gravitational potential at the surface.

φ =
GM

r
=

G 1.4 M¯

106 cm
=

6.67×108 cm s−2 g−1 × 1.4 × 1.9891×1033 g

106 cm

φ = 1.858×1020 cm2 s−2 = 0.2067 c2

Score: 2
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(b) Compute the relativistic gravitational potential at the surface of the neutron star.
If something is redshifted by a factor 1 + z when observed at infinity (large distance), this means
that the original energy was higher by a factor 1 + z; whet we observes is only 1/(1 + z) of
the original energy; the remainder, 1 − 1/(1 + z) = z/(1 + z) has been lost. Due to energy
conservation, this energy lost has to equal the potential energy, i.e., φ = −c2z/(1 + z).

Rs =
2 G M

r2
=

2 × 6.67×108 cm s−2 g−1 × 1.4 × 1.989×1033 g

2.998×1010 cm s−1
= 4.135×105 cm

Rs

r
=

4.135×105 cm

106 cm
= 0.4135

1 + z =
1√

1−Rs/r
=

1√
1− 0.4135

= 1.3058 , z = 0.3058

φ =
−c2 z

z + 1
= −c2

(
1− 1

z + 1

)
= −c2

(
1− 1

1.3058

)
= −c2 × 0.2342

φ = −
(
2.998×1010 cm s−1

)2 × 0.2342 = −8.988×1020 cm2 s−2 × 0.2342

φ = −2.105×1020 cm2 s−2

Score: 4

(c) Show that for r À Rs the usual Newtonian formula for gravitational potential and
acceleration is recovered.
For x ¿ 1 use the approximation formulae

√
1± x ≈ 1± 1

2
x ,

1
x
≈ 1− x

We note that for r À Rs we have Rs/r ¿ 1. We then have

φ =
−c2 z

z + 1
= −c2

(
1− 1

z + 1

)
= −c2

(
1−

√
1− Rs

r

)

φ ≈ −c2

(
1−

(
1− 1

2
Rs

r

))
= −Rsc

2

2r
= −2GMc2

2rc2
= −GM

r

And for acceleration
1 + z =

1√
1− Rs

r

≈ 1 +
1
2

Rs

r
→ 1

⇒
grel = (1 + z)

GM

r2
≈ GM

r2

Score: 4

(d) Assume the neutron star accretes material composed of solar composition. For simplicity, assume
this is 75% hydrogen and 25 % helium, by mass fraction.
Compare the specific energy that can be released by nuclear burning to 56Fe to the
gravitational potential at the surface of the neutron star.
For simplicity we neglect the energy lost due to neutrinos.
mass excess of

• 1H: 7.289 MeV

• 4He: 2.435 MeV

• 56Fe: −60.601 MeV

mass excess per nucleon:
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• 1H: 7.289 MeV

• 4He: 2.435 MeV/4 = 0.60875 MeV

• 56Fe: −60.601 MeV/56 = −1.08216 MeV

total energy release per nucleon from

• 1H: e1H = 7.289 MeV − (−1.08216 MeV) = 8.3712 MeV

• 4He: e4He = 0.60875 MeV − (−1.08216 MeV) = 1.6909 MeV

total energy per nucleon release weighed by mass fractions X = 0.75 and Y = 0.25

e = X × e1H + Y × e4He = 0.75 × 8.3712 MeV + 0.25 × 1.6909 MeV = 6.7011 MeV

energy release per gram is the approximately

e = 6.7011 MeV ×
(

1.6021773×10−6 erg

1 MeV

)
× NA = 1.0736×10−5 erg × 6.0221367×1023 g−1

e = 6.4656×1018 erg g−1 = 7.1939×10−3 c2

For GR gravity:
The nuclear energy is only e/φ = 7.1939×10−3 c2/0.2342 c2 ≈ 3.07 % of the gravitational potential
energy.
For Newtonian gravity:
The nuclear energy is only e/φ = 7.1939×10−3 c2/0.2067 c2 ≈ 3.48 % of the gravitational potential
energy.

Score: 4

(e) If the energy released by nuclear burning was used to lift off the surface of the
neutron star, how far can you lift it, or how fast can the material still move at
infinity (depending on which of the energies of the previous questions is greater)?
In principles one needs radius coordinate r as a function of potential φ, i.e., r(φ), and can then
compute

dr = r(φ + e)− r(φ)

. There are two possibilities:

i. Since e ¿ |φ| we could use

dr ≈ −e

(
dr

dφ

)
= −e

(
dφ

dr

)−1

For Newtonian gravity:
dφ

dr
=

d

dr

(
−GM

r

)
=

GM

r2

and we obtain

dr ≈ er2

GM
=

2er2

c2 Rs
=

2 × 7.1939×10−3 ×
(
106 cm

)2
4.135×105 cm

= 34796 cm

dr ≈ 350 m

For GR gravity:

dφ

dr
= −c2 d

dr

(
1−

√
1−Rs/r

)
=

c2 Rs

2 r2

(
1− Rs

r

)−1/2

and we obtain

dr ≈ 2 e r2

c2 Rs

(
1− Rs

r

)1/2

=
2 × 7.1939×10−3 ×

(
106 cm

)2
4.135×105 cm

(1− 0.4135)1/2 = 26647 cm

dr ≈ 270 m
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ii. Exact solution.
For Newtonian gravity:

e = GM

(
1
r
− 1

r + dr

)
dr = r

(
1

1− er/GM
− 1
)

= r

(
1

1− 2er/Rsc2
− 1
)

2er

Rsc2
=

2 × 7.1939×10−3 × 106 cm

4.135×105 cm
= 3.4796×10−2

dr = 106 cm ×
(

1
1− 3.4796×10−2

− 1
)

= 36050 cm ≈ 360 m

For GR gravity:

e = −c2
(
1−

√
1−Rs/r −

(
1−

√
1−Rs/(r + dr)

))
e = c2

(√
1−Rs/(r + dr)−

√
1−Rs/r

)
dr = Rs

[
1−

(√
1−Rs/r +

e

c2

)2]−1

− r = Rs

[
1−

(
1

1 + z
+

e

c2

)2
]−1

− r

dr = 413492 cm

[
1−

(
1

1.3057
+ 7.1939×10−3

)2
]−1

− 106 cm = 27647 cm ≈ 280 m

Score: 4

3. Black Holes

(a) Compute the Schwarzschild Radius of the sun and of the earth.

Rs =
2GM

c2
= M × 2G

c2
= M × 2× 6.67×10−8 cm s2 g−1

(2.9979×1010cm s−1)
= M × 1.4842×10−28cm g−1

Rs,¯ = M¯ ×
2G

c2
= 1.9891×1033 g × 1.4842×10−28cm g−1 = 2.95×105 cm ≈ 3 km

Rs = 2.954×105 cm

(
M

M¯

)
Rs,♁ = M♁ ×

2G

c2
= 5.9742×1027 g × 1.4842×10−28cm g−1 = 0.8867 cm

Score: 4

(b) In classical approximation using Keplerian mechanics, at what orbital distance would
an object be from the center of the Sun assumed as a point mass that has an orbital
velocity of the speed of light?
In Keplerian orbit centrifugal force equals gravity:

GM¯

r2
=

v2

r

for v = c one obtains for r:

r =
GM¯

c2
=

1
2
Rs,¯ = 1.5×105 cm = 1.5 km

Score: 4

Please use cgs units for calculations and numerical values.
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