
Recap
Energy Transport Equation

Summary

Astrophysics I: Stars and Stellar Evolution
AST 4001

Alexander Heger1,2,3

1School of Physics and Astronomy
University of Minnesota

2Theoretical Astrophysics Group, T-6
Los Alamos National Laboratory

3Department of Astronomy and Astrophysics
University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 13: Radiation Transport in Stars



Recap
Energy Transport Equation

Summary

Announcement

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 13: Radiation Transport in Stars



Recap
Energy Transport Equation

Summary

Announcement

Burning Neutron Stars
Alexander Heger

Friday, September 26, 15:00

The probably by far most common thermonuclear explosion to
occur in nature is the explosion of a thin layer of material, about
the height of the physics building, that has accumulated on the
surface of a neutron star, about the size of Minneapolis, in a binary
star system - Type I X-ray bursts. I show theoretical models for
such outbursts, their very specific mode of nuclear burning unheard
of in any other stellar system, as well as their much bigger cousins,
the superbursts. I will discuss our current difficulty in
understanding how those are made, and possible solutions.
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Equation of State and Opacity

electron positron pair production for T & 109 K

iron dissociation for T & 7×109 K

helium dissociation for T & 1010 K

optical depth
dτ = −κρ dr

electron scattering (Thompson scattering)

κes =
κes,0

µe
≈ 1

2
κes,0(1 + X )

κes,0 = 0.4cm2 g−1
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Stellar Structure Equations - Temperature Gradient

stationary terms time-dependent terms

∂r

∂m
=

1

4πr2ρ
(1)

∂P

∂m
= − Gm

4πr4
− 1

4πr2

∂2r

∂t2
(2)

∂F

∂m
= εnuc − εν−cP

∂T

∂t
+

δ

ρ

∂P

∂t
(3)

∂T

∂m
= − GmT

4πr4P
∇

[
1 +

r2

Gm

∂2r

∂t2

]
(4)

∂Xi

∂t
= fi (ρ, T ,X) (5)

where X = {X1, X2, . . . ,Xi , . . .} .
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Basic Estimates

mean free path lph = 1
κρ

for sun
ρ̄¯ = 3M¯

4πR¯
3 = 1.4 g cm−3,

κ ≈ 0.4 cm2 g−1

⇒ lph = 2 cm

using
Tc ≈ 107 K,
Tsurf ≈ 104 K
we may estimate

∆T

∆r
≈ Tc − Tsurf

R¯
≈ 1.4×10−4 K cm−1
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Basic Estimates

note that lph/R¯ ≈ 3×10−11

on a mean free path scale we have a temperature variation of
∆T ≈ lph

(
dT
dr

)
≈ 3×10−4 K

with u ∼ T 4 the anisotropy of radiation at T = 107 K is

4
∆T

T
∼ 10−10

⇒ very close to thermal equilibrium

at T = 107 K this anisotropy is still 103 times bigger than flux
at surface of 6×1010 erg s−1 cm−2

⇒ even small anisotropy can carry large flux!
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Diffusion of Radiative Energy

diffusive flux given by

j = −D∇n

Diffusion coefficient

D =
1

3
v lph

determined by mean free path lph and velocity v of the
particles

for radiative flux H we replace:

n by energy density U (per unit volume), U = aT 4, and
v by the speed of light, c
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Diffusion of Radiative Energy

we are only interested in the radial component we may replace

Hr = |H| = H,
∇U → ∂U

∂r

we the obtain
∂U

∂r
= 4aT 3 ∂T

∂r

and for the flux

H = −4ac

3

T 3

κρ

∂T

∂r

or in mass coordinate

H = − ac

3π

T 3

κρ2r2

∂T

∂m
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Heat Conduction

formally we can write this as a heat conduction equation

H = −krad∇T

where we define

krad =
4ac

3

T 3

κρ

using F = 4πr2H we can solve for

∂T

∂r
= − 3

16πac

κρF

r2T 4

or, in mass coordinate

∂T

∂m
= − 3

64πac

κF

r4T 4
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Radiative Energy Transport

if we divide by the equation for hydrostatic equilibrium

∂P

∂m
= − Gm

4πr4

we obtain
∂T

∂m
=

3

16πacG

κF

mT 3

∂P

∂m

we may rewrite the temperature gradient due to radiation as

∇rad =

(
d ln T

d ln P

)
rad

=
3

16πacG

κFP

mT 4

and obtain
∂T

∂m
= − GmT

4πr4P
∇rad
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Quiz

using the momentum equation including acceleration

∂P

∂m
= − Gm

4πr4
− 1

4πr2

∂2r

∂t2

find the appropriate expression for

∂T

∂m
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Radiative Energy Transport

if we divide by the momentum equation

∂P

∂m
= − Gm

4πr4
− 1

4πr2

∂2r

∂t2
= − Gm

4πr4

[
1 +

r2

Gm

∂2r

∂t2

]
we obtain

∂T

∂m
=

3

16πacG

κF

mT 3

∂P

∂m

[
1 +

r2

Gm

∂2r

∂t2

]−1

defining

∇rad =

(
d ln T

d ln P

)
rad

=
3

16πacG

κFP

mT 4

[
1 +

r2

Gm

∂2r

∂t2

]−1

we write
∂T

∂m
= − GmT

4πr4P
∇rad

[
1 +

r2

Gm

∂2r

∂t2

]
Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 13: Radiation Transport in Stars



Recap
Energy Transport Equation

Summary

Radiative Energy Transport
Conductive Energy Transport
Rosseland Mean Opacity

Conductive Energy Transport

so far we only dealt with the radiative flux

H = Hrad

we can write the conductive flux in the same form

Hcd = −kcd∇T

and add both up

H = Hrad + Hcd = −(krad + kcd)∇T
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Conductive Energy Transport

we can also formally write

kcd =
4ac

3

T 3

κcdρ

and then have for the total flux

H = −4πac

3

T 3

ρ

(
1

κrad
+

1

κcd

)
∇T

and can define
1

κ
=

1

κrad
+

1

κcd

to recover the original form

H = −4πac

3

T 3

κρ
∇T
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Rosseland Mean Opacity

for radiative transport, all quantities have to be considered a
function of frequency, lν,ph, Hν , Dν , Uν , κν , etc.

we then write the flux as

Hν = −Dν∇Uν

and

Dν =
1

3
c lν,ph =

c

3κνρ

and the energy density as

Uν =
4π

c
B(ν, T ) =

8πh

c3

ν3

ehν/kBT − 1

where B(ν, T ) is the Planck function for intensity
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Rosseland Mean Opacity

we may hence write

∇Uν =
4π

c

∂B

∂T
∇T

we obtain the total flux by integration over all frequencies

H = −
[
4π

3ρ

∫ ∞

0

1

κν

∂B

∂T
dν

]
∇T

this is a conduction equation

H = −krad∇T

with

krad =
4π

3ρ

∫ ∞

0

1

κν

∂B

∂T
dν
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Rosseland Mean Opacity

and from

krad =
4ac

3

T 3

κρ

we can define the Rosseland mean opacity

1

κ
=

π

acT 3

∫ ∞

0

1

κν

∂B

∂T
dν

since
acT 3

π
=

∫ ∞

0

∂B

∂T
dν

the Rosseland mean opacity is the harmonic mean.
considering

Hν = −
(

1

κν

∂B

∂T

)
4π

3ρ
∇T

we see that frequencies of maximum energy flux are favored
in the mean.
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energy flux and effective opacity

H = −4πac

3

T 3

κρ
∇T ,

1

κ
=

1

κrad
+

1

κcd

temperature gradient in hydrostatic star

∂T

∂m
= − GmT

4πr4P
∇

where for radiation we have

∇ = ∇rad =

(
d ln T

d ln P

)
rad

=
3

16πacG

κFP

mT 4

Rosseland mean opacity

1

κ
=

π

acT 3

∫ ∞

0

1

κν

∂B

∂T
dν
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