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White Dwarf Mass-Radius Relation

White dwarf stars: mass ∼ M¯, radius ∼ earth radius, cold
⇒ Well described by (non-relativistic) degenerate equation of
state with µe = 2, Pe,deg = K1ρ

5/3 ⇒ K = K1 and n = 1.5.

from the mass-radius relation,(
GM

Mn

)n−1( R

Rn

)3−n

=
[(n + 1)K ]n

4πG

we then find

R ∝ M−1/3 , ρ̄ ∝ MR−3 ∝ M2

Note: for increasing mass, the radius decreases and the
density increases.

eventually the density becomes so high that we can no longer
use non-relativistic degenerate equation of state.
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White Dwarf Mass-Radius Relation

WD mass
diverges for
M → 0

WD mass goes
to zero at
Chandrasekhar
mass

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 24: Eddington Limit



Recap
Simple Stellar Models

Maximum Mass of White Dwarfs
Chandrasekhar Mass

White Dwarf Maximum Mass

When we use the relativistic degenerate equation of state
(µe = 2),

Pe,rel−deg =
hc

8

(
3

π

)1/3 1

u4/3

(
ρ

µe

)4/3

= K2ρ
4/3

we have a polytrope with K = K2 and n = 3.

we recall that for n = 3 there is only one unique mass as
solution

M = 4πM3

(
K

πG

)3/2

This determines the maximum mass of white dwarfs
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The Chandrasekhar Mass

This limiting mass for degenerate stars is called the
Chandrasekhar Mass

MCh =
M3

4π

(
3

2

)1/2( hc

Gu4/3

)3/2

µe
−2 = (5.836 M¯)µe

−2

MCh = 1.459 M¯

(µe

2

)−2

(Nobel Prize in Physics 1983)
for an iron core with µe = 2.15 we obtain MCh = 1.26 M¯
for “hot” cores of massive stars partially degenerate
relativistic equation of state has to be used
⇒ Mcrit > MCh

Mcrit ≈ MCh

"
1 +

π2k2T 2

εF
2

#
where εF is the Fermi energy for the relativistic and partially degenerate electrons, Ye = 1/µe,

εF = 1.11

„
ρ

107 g cm−3
Ye

«1/3
MeV
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Eddington Limit

The radiation pressure is given by Prad = a
3
T 4, hence its gradient is

dP

dr
=

4a

3
T 3 dT

dr

The radiative temperature gradient is given by

dT

dr
= − 3κL

4acT 34πr 2

where at the surface we use F = L, and we get

dP

dr
= − κρL

4πr 2c

Comparing this to the gravitational acceleration, (force per unit volume)

dP

dr
= −ρ

GM

r 2

and solving for L we obtain

Ledd =
4πcGM

κ
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Eddington Limit from Flux

The outward flux at the surface is

H =
L

4πr2

the force from radiation pressure is

dP

dr
= −κρ

c
H = − κρL

c4πr2

setting these two equal, we again recover

Ledd =
4πcGM

κ
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Eddington Limit - Approximations

as simple approximation we often use just the electron
scattering opacity, (with κes,0 = 0.4 cm2 g−1)

κ = κes =
κes,0

µe
≈ 1

2
κes,0(1 + X )

κes,0 is due to Thompson scattering on free electrons, with a

cross section of σT =
(

8π
3

)(
e2

mec2

)2
= 6.652×10−25 cm2;

κes,0 = σT/u

for a fully ionized gas of pure hydrogen we hence have

Ledd ≈
4πcGM

κes,0
=

4πcGMu

σT

Ledd ≈ 1.3×1038

(
M

M¯

)
erg s−1 = 3.3×104

(
M

M¯

)
L¯
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Implications of Eddington Limit

Maximum luminosity proportional to mass
⇒ minimum lifetime of stars
(assuming certain fraction of nuclear energy supply is being
used)

for “spherical” accretion this sets a maximum accretion rate
from accretion luminosity
(assuming radius of object or energy release efficiency by
accretion)
How fast can one assemble an astrophysical object?
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Is Super-Eddington Luminosity Possible?

Eddington Limit assumes strict spherical symmetry
⇒ if problem not spherically symmetric, higher luminosity
may be possible:

accretion disks
surface convection, turbulence.
“porosity” - radiation to escape between gas in regions of low
opacity
“bubble” with high magnetic pressure and photon gas break
out at the surface

Eddington Limit assumes transport by radiation
⇒ if energy is transported otherwise, higher L may be
possible:

convection
sound waves
magnetic Alfvén waves
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Beyond the Eddington Limit

Eddington Limit assumes hydrostatic equilibrium
⇒ in dynamic situations L can be higher

supernovae
gamma-ray burst
other kinds of transients

Eddington Limit hydrogen gas and electron scattering opacity
⇒ composition and state of gas can change limit

neutral hydrogen gas in red giant stars may have lower opacity
(pure) helium stars have fewer electrons per unit mass
metals may increase opacity at photosphere

Final Note:
for the Eddington limit we were interested in a global limit
based on simple assumptions, that, e.g., is independent on
radius
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Eddington Quiz

Derive Eddington Luminosity for pure helium stars.

From small groups of 2-3 and write down your derivation.
You have two minutes.

Be prepared to present your group’s solution on the black board.
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Eddington Accretion Quiz

Assume a star of radius R and mass M accretes material as
“Eddington rate”, i.e., the “accretion luminosity” equals the
Eddington luminosity.

For simplicity, assume that this accretion luminosity is just
given by accretion rate and surface potential.

Assume that all the energy that is released as the material hits
the surface is radiated away.

Assume that the gas is optically thin before it hits the surface,
i.e., the gas does not “trap” the radiation.

Assume pure hydrogen gas.

Compute this Eddington accretion rate.

From small groups of 2-3 and write down your derivation.
3 minutes.

Be prepared to present your group’s solution on the black board.
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