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Regimes of Stellar Evolution

Recall
Pc =

3
√

4πBnGM2/3ρ
4/3
c

for ideal gas, Pc = K0ρcTc and we obtain

ρc =
K 3

0

4πB3
nG 3

T 3
c

M2

⇒ parallel lines with log ρc = 3 log T − 2 log M + const.

for non-rel. degenerate gas Pc = K1ρ
5/3
c we obtain

ρc = 4π

(
B1.5G

K1

)3

M2

⇒ parallel lines at log ρc = 2 log M + const.
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Quiz Solution

Find a relation for relativistic degenerate gas.

for rel. degenerate (electron) gas

Pc = K2ρ
4/3
c

in
Pc =

3
√

4πBnGM2/3ρ
4/3
c

we obtain (using M3 = (4B3)
−3/2)

M =
1√
4π

(
K2

GB3

)3/2

= 4πM3

(
K2

πG

)3/2

...the Chandrasekar Mass!
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Domains of Stellar Mass

Regimes of
stellar mass in
the
temperature-
density
diagram
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Evolution Tracks

Evolution of
Stars in the
temperature-
density
diagram
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Burning Phases in Stars

20 M¯ star
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Evolution of Stars, 15M¯ and 25 M¯

Evolution of
central
temperature and
density for initial
stellar masses of
15 M¯ and
25 M¯ in the
density-
temperature
diagram

(note reversal of
T and ρ)
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Burning Phases in the Stellar Interior
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Evolution of Stars, 1–15M¯

Evolution of central
temperature and density
for initial stellar masses of
1 M¯ to 15 M¯ in the
temperature-density
diagram.
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Configuration of a 10M¯ Star

Configuration of
a 10 M¯ star at
different
evolution phases
in the
temperature-
density
diagram.
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Evolution of the Sun in the HRD

Evolution of the sun
from formation
through hydrogen
burning
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Main Sequance in a Star Cluster

Hyades cluster and stellar
tracks

log L = α log Teff + const.
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Mass-Luminosity Relation

Mass-Luminosity relation for
(zero-age) main-sequence
(ZAMS) stars

L ∝ Mν

with ν = 3 . . . 5.
Can be calibrated piecewise to

L

L¯
=

(
M

M¯

)ν
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Stellar Structure Equations

stationary terms time-dependent terms

∂r

∂m
=

1

4πr2ρ
(1)

∂P

∂m
= − Gm

4πr4
− 1

4πr2

∂2r

∂t2
(2)

∂F

∂m
= εnuc − εν − cP

∂T

∂t
+

δ

ρ

∂P

∂t
(3)

∂T

∂m
= − GmT

4πr4P
∇

[
1 +

r2

Gm

∂2r

∂t2

]
(4)

∂Xi

∂t
= fi (ρ, T ,X) (5)

where X = {X1, X2, . . . ,Xi , . . .} .
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Simplified Stellar Structure Equations

only radiative temperature gradient: ∇ = ∇rad = 3
16πacG

κFP
mT 4

only simple law for nuclear burning: ε = εnuc − εν = q0ρT n

only ideal gas pressure: P = Pgas = RTρ
µ

∂r

∂m
=

1

4πr2ρ

∂P

∂m
= − Gm

4πr4

∂T

∂m
= − 3

4ac

κ

T 3

F

(4πr2)2

∂F

∂m
= q0ρT n

P =
RTρ

µ
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Dimensionless Stellar Structure Equations

all functions r(m), P(m), ρ(m), T (m), and F (m) need to be
solved in range 0 ≤ m ≤ M

free parameter: mass M

parameters κ, q0, µ, and n determined from physics

introduce dimension-less variable

x =
m

M

we can now write a set of dimension-less equations with
functions fi (x) for these 5 quantities:
r = f1(x)R∗
P = f2(x)P∗
ρ = f3(x)ρ∗
T = f4(x)T∗
F = f5(x)F∗
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Dimensionless Stellar Structure Equations

substituting
m = Mx ,
r = f1(x)R∗,
P = f2(x)P∗ into

∂P

∂m
= − Gm

4πr4

we obtain
P∗
M

df2
dx

= − GMx

4πf 4
1 R4

∗
If we define

P∗ =
GM2

R4
∗

we may write
df2
dx

= − x

4πf 4
1
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Quiz

Try this for the other four equations

Work and discuss in groups of 2-3.

3 min

Please write up your solution.

Please sign with your names and to hand in.

(no grades)
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Quiz - equations

Try this for the other four equations

∂r

∂m
=

1

4πr2ρ

∂P

∂m
= − Gm

4πr4

∂T

∂m
= − 3

4ac

κ

T 3

F

(4πr2)2

∂F

∂m
= q0ρT n

P =
RTρ

µ

r = f1(x)R∗

P = f2(x)P∗

ρ = f3(x)ρ∗

T = f4(x)T∗

F = f5(x)F∗
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Dimensionless Stellar Structure Equations

In a similar way we can re-write the entire set

df2
dx

= − x

4πf 4
1

, P∗ =
GM2

R4
∗

df1
dx

=
1

4πf 2
1 f3

, ρ∗ =
M

R3
∗

f2 = f3f4 , T∗ =
µP∗
Rρ∗

df4
dx

= − 3f5

4f 3
4

(
4πf 2

1

)2 , F∗ =
ac

κ

T 4
∗R4

∗
M

df5
dx

= f3f
n
4 , F∗ = q0ρ∗T

n
∗M

⇒ homology of solution as function of M!
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Dimensionless Stellar Structure Equations

substituting P∗ = GM2

R4
∗

and ρ∗ = M
R3
∗

into T∗ = µP∗
Rρ∗

we obtain:

T∗ =
µG

R
M

R∗

adding this into F∗ = ac
κ

T 4
∗R4

∗
M we obtain

F∗ =
ac

κ

(
µG

R

)4

M3

we recover L ∝ M3

τMS = M
L ∝ M−2

but this relation also holds for any value of x -
inside star at same relative mass coordinate

Stars and Stellar Evolution - Fall 2008 - Alexander Heger Lecture 29: Evolution of Stars - Theory of the Main Sequence



Recap
Stellar Evolution

Theory of the Main Sequence

Recap: Observational Behavior
Scaling Laws

Dimensionless Stellar Structure Equations

substituting F∗ = ac
κ

(
µG
R

)4
M3 into F∗ = q0ρ∗T

n
∗M

and using P∗ = GM2

R4
∗

, ρ∗ = M
R3
∗
, and T∗ = µP∗

Rρ∗
we obtain:

R∗ ∝ M
n−1
n+3

⇒ for large n (CNO cycle: n ≈ 14 . . . 16):
roughly R∗ ∝ M
(big stars)

⇒ for small n (pp chains: n = 4):
R ∝ M3/7
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Dimensionless Stellar Structure Equations

inserting R∗ ∝ M
n−1
n+3 into ρ∗ = M

R3
∗

we obtain

ρ∗ ∝ M2 3−n
3+n

since n > 3:
density decreases with mass!

in particular, this is true for central density.
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Dimensionless Stellar Structure Equations

Using
L = 4πR2σT 4

eff

we obtain

L
1− 2(n−1)

3(n+3) ∝ T 4
eff

for n = 4 we obtain

log L = 5.6 log Teff + const.

for n = 16 we obtain

log L = 8.4 log Teff + const.
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Dimensionless Stellar Structure Equations

from T∗ = µG
R

M
R∗

and R∗ ∝ M
n−1
n+3 we obtain for the (central)

temperature

Tc ∝ M
4

n+3

for n = 4 (pp chain, low-mass stars) we hence have

Tc ∝ M4/7

for n = 16 (CNO cycle, massive stars) we hence have

Tc ∝ M1/5

⇒ due to high temperature-sensitivity of CNO cycle nuclear
burning, massive stars require only little higher central
temperature to compensate for their hight luminosity.
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Dimensionless Stellar Structure Equations

calibration to the sun, Tc,¯ ≈ 1.5×107 K

Tc

Tc,¯
=

(
M

M¯

)4/7

assuming minimum temperature Tmin for hydrogen ignition,
Tmin ≈ 4×106 K, and requiring Tc > Tmin we obtain

M

M¯
≥

(
Tmin

Tc,¯

)7/4

⇒ minimum stellar mass Mmin ≈ 0.1 M¯
⇒ minimum stellar luminosity:

Lmin

L¯
=

(
Mmin

M¯

)3

≈ 10−3
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