Astrophysics I: Stars and Stellar Evolution AST 4001

Alexander Heger^{1,2,3}

¹School of Physics and Astronomy University of Minnesota

²Nuclear & Particle Physics, Astrophysics & Cosmology Group, T-2 Los Alamos National Laboratory

> ³Department of Astronomy and Astrophysics University of California at Santa Cruz

Stars and Stellar Evolution, Fall 2008

Overview

- Recap
 - Excited Atoms and Ionization
 - Line Formation

- Recycling Stellar Remnants
 - Variations on Afterlife
 - Accretion Disks

Radiative Transfer in Gray Atmosphere

distribution of temperature in a gray atmosphere is

$$T^4 = \frac{3}{4} T_{\text{eff}}^4 \left(\tau + \frac{2}{3} \right)$$

Note that $T = T_{\rm eff}$ at $\tau = 2/3$

• First Eddington-Barbier Relation

$$I_{
u}(0,\Theta) = a_{
u} + b_{
u} \cos\Theta = B_{
u}(au_{
u} = \cos\Theta)$$

Second Eddington-Barbier Relation

$$F_{
u}(0)=\pi\,B_{
u}igg(au=rac{2}{3}igg)$$

flux from stellar surface at a particular frequency is determined by Planck function at $T(\tau_{\nu}=2/3)$

Limb Darkening

$$I(0,\Theta) = \frac{F}{4\pi} (2 + 3\cos\Theta)$$

Hydrogen level scheme

Saha Function - Levels

ratio of occupation N_i of levels i = n and i = n':

$$\frac{N_n}{N_{n'}} = \frac{g_n}{g_{n'}} \exp\left[-(\chi_n - \chi_{n'})/kT\right], \quad g_n = 2J + 1, \quad J = L + S$$

 g_n is called the *statistical weight*,

J, L, and S are total and orbital angular momentum and spin of the electron

partition function and total number of atoms:

$$u(T) = \sum g_n \exp(-\chi_n/kT), \quad N = \sum_{n=1,...} N_n$$

Using $\Theta = 5060/T$ in eV we can write:

$$\frac{N_n}{N} = \frac{g_n}{u(T)} 10^{-\Theta\chi_n},$$

Saha Function - Ionization

Similarly, using

$$P_{\rm e} = n_{\rm e} k_{\rm B} T$$

we can also write the ratio of ionization levels r as

$$\log\left(\frac{N_{r+1}}{N_r}P_{\rm e}\right) = \Theta\chi_r + 2.5\log T - \log\frac{2u_{r+1}}{u_r} - 1.48$$

Solar Spectrum

Line Profile

Equivalent Width

Line Formation

Sodium D Line

Line Broadening

Call K line, Theoretical Models

Schematic curve of growth

The Sun

Overview

- Recap
 - Excited Atoms and Ionization
 - Line Formation

- Recycling Stellar Remnants
 - Variations on Afterlife
 - Accretion Disks

The Guitar Nebula

Compact Binaries

- compact remnants
 - white dwarf
 - neutron star
 - black hole
- types of systems
 - compact remnant + . . .
 - main sequence star
 - evolved star (red) (super) giant
 - two compact stars
 - double WD, double NS (double pulsar), double BH
 - WD+NS, WD+BH
 - NS+BH

Accreting Binary

Evolution of Compact Binaries

- mass transfer
 - ⇒ accretion disk
 - \Rightarrow X-ray binary

What can it tell about the type of the compact star?

- loss of angular momentum (braking)
 - wind
 - magnetic fields
 - gravitational waves
 - ⇒ orbits gets increasingly tighter
 - merger
 - ⇒ gravitational wave signal
 - disruption of the less compact star
 - ⇒ accretion disk, ...

Binary WD

Shock Wave in Millisecond Pulsar

Evolution of Compact Binaries

accumulation of accreted material

- composition of accreted material?
- does accreted material burn?
- burning stable or not?
- thermonuclear runaway?
 - Novae how much material is ejected? does WD star grow?
 - detonation of "thick" H/He layer on WD surface?
 - supernovae
 - Type Ia CO WDs
 - AIC ONeMg WDs
 - (Type I) X-ray bursts
- stability of the accretion disk
 - outbursts from disk instabilities

Neutron Star Merger

Final Fate of Compact Binaries

merger or disruption of one of the stars

- disruption
 - tidal disruption of less compact star
 - \bullet WD + MS/post-MS star: mass transfer
 - CO WD: ignition, Type Ia SN, no remnant
 - ONeMg WD: AIC ⇒ NS:
 - * "kick" during NS formation ⇒ system separates
 - * NS + MS/post-MS star
- merger
 - $NS+NS \Rightarrow short GRBs$
 - WD+WD ⇒ supernova?
 - WD+MS/post-MS star \Rightarrow AIC
 - BH+BH \Rightarrow GR wave signal
 - BH+NS ⇒ accretion disk, GRB?
 - WD+NS/BH ⇒ fast transient form accretion disk...
 NS→BH collapse?

Accreting Binary

Accretion onto Black Hole

