Nuclear Physics I: Nuclear Astrophysics PHYS 8801

Alexander Heger¹

¹Minnesota Institute for Astrophysics School of Physics and Astronomy University of Minnesota

Nuclear Physics I: Nuclear Astrophysics, Spring 2012

Agenda

- Overview
- Course Administration
- Prerequisites
- Course Topics

Introduction

- Origin of the Elements
- Composition of Earth

Overview

- Overview
- Course Administration
- Prerequisites
- Course Topics

Introduction

- Origin of the Elements
- Composition of Earth

Target Audience and Class Content

- This series is a modern course covering current topics of Nuclear Physics, in particular Nuclear Astrophysics (8801) and Finite-Temperature Field Theory (8802).
- It has less emphasis on some of the classical nuclear physics theory such as nuclear structure.
- This course can be considered an advanced version of continuation of AST-4001 and we anticipate it will be cross-listed as 8000 Stellar Astrophysics in Astronomy.
- The goal of this course is to give a thorough overview of the field of Nuclear Astrophysics from microscopic physics input to macroscopic astrophysical environments with special emphasis on nucleosynthesis and neutrinos.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Textbooks

Christian Iliadis:

Nuclear Physics of Stars

• Kippenhanh & Weigert:

Stellar Structure and Evolution

Course requirements

- Will use Stellar Evolution Code MESA to do course projects (homework)
- A small set of other homework problems
- Project write-up on evolution study or literature project

Contact

Location & Dates:

Physics 157, T 9:00-10:00 A.M. Physics 157, Th 9:00-10:30 A.M.

Office hours:

TBD, 342F Tate

email:

alex@physics.umn.edu

Web site:

http://stellarevolution.org/PHYS-8801
probably we can do things by e,ail instead

• Google course calendar (on Web site):

(will set up)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 5001/5002 Quantum Mechanics
- 2 5011/5012 Classical Physics
- 5201 Thermal and Statistical Physics
- AST-4001 (recommended)

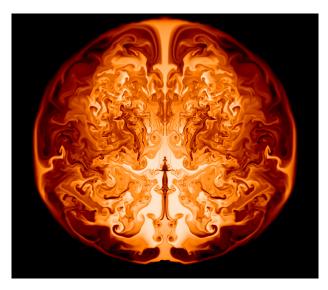
Topics

Thermonuclear Reactions

- nuclear physics background
- specific reactions relevant to nuclear astrophysics
- Stellar Evolution
 - stellar structure and evolution
 - nuclear burning phases
 - low-mass and massive star evolution

Topics (continued)

Supernovae


- types and mechanisms
- nucleosynthetic processes
- Output Strophysics
 - neutrinos and big bang nucleosynthesis
 - solar neutrinos
 - supernova neutrinos
 - neutrino oscillations

Topics (continued)

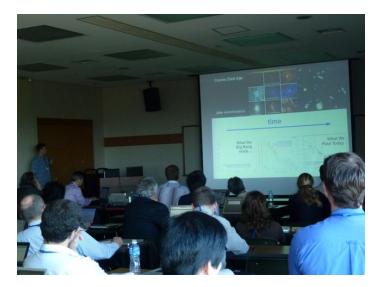
Nucleosynthesis beyond the Fe Peak

- s- and r-processes
- p- and nu-p-processes
- Galactic Chemical Evolution
 - overview of the origin of the elements
 - observations
 - models
- Exotic stars
 - neutron star physics
 - novae, X-ray bursts and other transients

A Supermassive Star

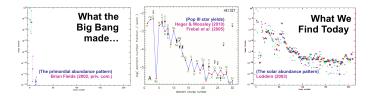
Class Project - Stellar Evolution Topics

- Evolution of the Sun (vary input physics)
- Stars and nuclear reaction rates
- Stars and what they are made of
- helium stars
- your suggestion

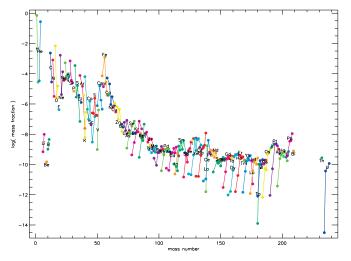

Overview

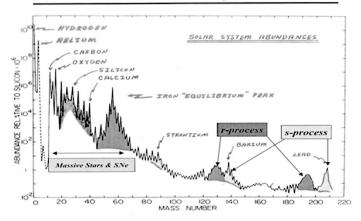
Welcome

- Overview
- Course Administration
- Prerequisites
- Course Topics

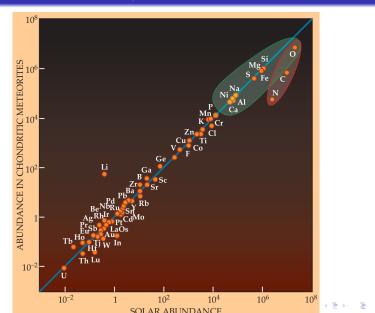

Introduction

- Origin of the Elements
- Composition of Earth




time

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●



"Cosmic" Abundances of the Elements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Composition of Solar System

Composition of Earth

