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What are Stars?

Stars

@ are bound by self-gravity

@ radiate energy supplied by an internal source
Usually stars have a nuclear energy source
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Energy Sources

What energy sources are conceivable?
@ gravitational binding energy

e contraction
e gravitational settling

@ nuclear energy / burning

@ chemical energy / burning

@ heat capacity (just cooling down)
@ pulsation energy dissipation

@ rotational energy dissipation
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What are Stars? (continued)

@ Stars usually live and shine steadily for a long time

@ From (1) follows that stars usually are spherical unless
they rotate strongly

@ Planets mostly shine by reflection of sun light

@ Because stars radiate - lose energy - energy conservation
requires that they must evolve; they burn nuclear fuel

@ “Death” of stars by disruption or running out of fuel; often a
combination of both (“compact” remnant formation - white
dwarf, neutron stars, black hole, in the latter two cases a
powerful “supernova” may occur in the process)
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What are Stars? (continued)

@ Star formation is very complicated

@ We will follow stars from the early time when they fulfill
conditions (1) and (2)

@ Galaxies are large systems of stars, some 106...101"2

@ Clusters of galaxies can contain some 100,000 galaxies
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The Sun

@ Luminosity
Lo = 3.84 x 1033 erg/s = 3.84 x 1026 J/s

@ Mass
Mg = 1.98 % 10339: 1.98 x 1O3°kg

@ Radius
R = 6.98 x 10"%cm = 6.98 x 105km
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Gravitational Binding Energy

Binding energy can be approximated by

2
E:GM

3
- -8

T G =6.67259 x 10 o

The lifetime of the star is then defined by how long it takes to

radiate away that energy, hence dividing by luminosity

_E GoMm?
TKH= T 2RL
This is called the Kelvin-Helmholtz time-scale.
It tells how long a star takes to radiate away it gravitational
binding energy. This is also the time-scale for stars to get in
gravo-thermal equilibrium.
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Gravitational Binding Energy

For the Sun we obtain

_ GMZ
KO = oR 1,

TkHo = 4.9 x 10" s =15.6 x 108 yr
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Basic Assumptions

@ stars evolve in isolation
distances between stars are large compared to their radii

@ spherical symmetry
sun rotates once in 27 days, w ~ 2.5 x 1078/s

Mw?R? B w2 R3
GM2/R - GM

@ only small variation in (initial) composition of stars
sun: X =0.70,Y=028,Z2=002, X+ Y+Z=1

@ small magnetic fields - even for B ~ 0.1 T:

~2x107°

Bz/MO _ B2R* ~ 1011
GM?2/R* o GM?
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The Solar Abundance Pattern (Elements)

mass fraction

element charge number
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The Solar Abundance Pattern (Isotopes)

maoss fraction
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Evolution of the Sun in the HRD
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The Solar Neutrino Spectrum
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The Sun as Seen in Neutrinos
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Stellar Structure Equations

stationary terms time-dependent terms

or 1

am = 4nr2, (M)
om  Axr* 4nr2 o2

oF oT | 50 "
am e T ST P T ot

oT GmT re 92r

vl L yr 4
om~ " axrdp’ [1 Gm atZ] @
0X; .

where X = { X1, Xo,..., Xj,...} .
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Relation between mass and radius

@ integral formulation:
r
m(r):/ 4rr?p(r)dr
0
@ differential formulation

dm = 4mprdr
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Stellar Gas

@ stellar “gas” composed ions, electron, and radiation

@ radiation regarded as “photon gas” with quanta caring hv
energy and hv/c momentum

@ photon gas described by Planck spectrum

@ ion/electron gas described by Maxwellian velocity
distribution

@ at high density and low temperature electron gas follows
degenerate equation of state (Fermi statistics)

@ at even lower T and higher p ions (nucleons) can be
degenerate (e.g., neutron stars)
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Summary

@ Equation of Motion
&r__Gm_, 20P
a2 r2 ™ am
@ hydrostatic equilibrium
op __Gm
om  4xr4
@ change of composition
0X;
8—/ =1i(p, T, X) = finue (p, T, X) + fimix (0, T, X)

@ nuclear reactions

5 ﬂ,-—a,- aq o
5tV = 2 Aatrezeogitesze. S YR
> attrag2to. —BylBe2 . o Ty T
a17042,...
/817627“'
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Summary of Pressure Contributions

@ Pressure integral P =} [ vpn(p)dp
® P =P+ Pe+ Prag = Pgas + Prag
define 8 = Pyas/P = Pgas = BP, Prag = (1 — B)P
@ gas pressure
Pgas = RP%
@ degenerate electron pressure

312/3 5/3
Pe,deg ZOnZZW( ) (,U«e)

@ relativistic degenerate electron pressure

4/3

he (3\1/3

Pe,rel—deg 8ud/3 ( ) (ue)

@ radiation pressure
rad_stOChyn dl/:%aT“.
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Regimes of the EOS
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Electron Equation of State Regimes
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Electron-Positron Pair Production

@ At T > 1x10°K photon can produce electron-positron
pairs, from the highest energy photons of the Planck
spectrum, hv > 2megc?:

et +e =y

@ This converts radiation energy into rest mass of pairs
@ hence compression increases pressure less
@ = adiabatic index ~,q lower

@ possible instability of star (yag < §)
“pair instability supernova”
(Vad = % is needed for stability of stars, as we shall see later)

Neutrinos & Origin of Elements - Alexander Heger Lecture 3: Stellar Structure



Basic Assumptions About Stars
The Sun
Stellar Equation of State

Introduction

Electron-Positron Pair Production and Iron
Dissociation

9T Pair SNe Instability Regimes

adiabatic index < 4/3
Compression does not
result in sufficient increase
in pressure (gradient) to
balance higher gravity at
lower radius

e*/e-Pair Instability
Internal gas energy is

converted into e*/e" rest
& NeO WD mass (hard photons from

/ ,g B tail of Planck spectrum)
T

/’\ CO WD Internal gas energy is
;YA used to unbind heavy

supernova

./.
/.

1 1 1 L 1 1

2 4 6 8 10 nuclei into alpha particles
lg polp.e and at higher temperature
those into free nucleons

Kippenhahn & Weigert (1990)
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Iron Photo-Dissociation

@ At very high temperatures in the stellar core, typically
during the last stages of massive (and very massive) stars,
including collapse of the iron core, iron can be dissociated,
typically above T > 7x10°K:

%Fe + vy =13%He +4n

@ This takes 100 MeV
@ = gas energy is used to unbind nucleus

@ takes (about) as much energy as was released before to
burn “He to %6Fe

@ = 7,4 drops
@ = possible instability of star (collapse)
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Electron-Positron Pair Production and Iron
Dissociation
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Helium Photo-Dissociation

@ At even higher temperatures helium can be dissociated,
typically above T > 10'°K:

‘He+~y=2n+2p

@ This takes ~ 28 MeV per “He
@ = again, gas energy is used to unbind nucleus

@ takes (about) as much energy as was released before to
burn 4'H to “He
(not counting neutrino losses during hydrogen burning)

@ = v, drops
@ = possible instability of star (collapse)
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Helium and Iron Dissociation
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Overview

@ Burning in Stars
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Burning in Stars

Burning Phases in Stars

20 M, star

Main Secondary T Time Main

Fuel  product Product (109K)  (yr)  Reaction

CNO

14N 0.02 107  4H> “He

H He
He/ 180, 22Ne

3 He* > 12C

0’ C s-process 0.2 10° uCZX,Y)mO

C ',\“,IZ Na 0.8  10° 12c+"C
20Ne(y,01) 160

/o Mg ALP 15 3 I

ox¥ _si, Lo S 0.8 | "0+%0
si, §/ BRI 0.02 S
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