ADD-ON

TO KEPLER MANUAL VERSION 1 MAY 1991

October 22, 2011 by Alexander Heger

Contents

1	Undocumented Parameters (by value)	4
2	New Parameters (by value)	5
3	Changed Parameters (by value)	23
4	New Edit ('Q') Parameters	24
5	New Terminal Commands	27
6	Changed Terminal Commands	35
7	Changed Generator Commands	38
8	New Generator Commands	39
9	New BURN Generator Cards	41
10	New plots and plotting commands	42
11	New Edit Quantities	44
12	New Variables	47
13	New auto-linked aliases	48
14	All New: Environment Variables	49
15	MONGO Environment Variables	50
16	Changed OS/Startup Commands	51

1	Undocumented Parameters	(by value)

Р	name	default	description
355	xlanger1	$0.0d{+}0$	Langer mass loss rate parameter 1
356	xlanger2	$0.0d{+}0$	Langer mass loss rate parameter 2
357	iburnye	0	If 1 initialize ISE zones with ye taken from the BURN network.
358	relmult	0.0d0	Multiplier on GR corrections. GR is turned off if set to $0.0d0$
359	geemult	1.0d0	Multiplier on gravitational constant
350	grbparm	0.0d0	Energy deposition for GRB modeling. The source code says "the following is a kludge for grb modelling only. Do not use any other place. Using this with nuclear burning on will double count neutrino losses". It also sets xk1=xkmin for zone jm-1.
351	swmult	0.0d0	It does not appear to actually do anything
352	tsharp	0.0d0	A parameter for Type Ia SNe simulations

2 New Parameters (by value)

Р	name	default	description
137	nadapb	0	turns on adaptive BURN network adjustment if 1, off if 0.
363	xmlossn	0.0D0	multiplier on Niewenhuijzen & de Jager mass loss rate
364	nangmix	0	turn rotational mixing on (1) or off (0)
365	angfmu	1.0D0	molecular weight sensitivity of rotational mixing processes; affects Eddington-Sweet circulation and Coldroich Schubert Frieke instability:
			Goldreich-Schubert-Fricke instability, If a negative sign is added, these instabilities are completely switched off when the " μ -current" exceeds the destabilizing circulation velocity, otherwise they are just reduced by a factor of one plus the ratio of the two circulation velocities.
366	angfc	1.0D0	efficiency of chemical mixing by rotational insta- bilities
367	angfjc	1.0D0	efficiency of angular momentum transport by (semi)convection
368	angrcrit	2.5D+03	critical Reynolds number (affects secular shear in- stability)
369	angric	2.5D-1	critical Richardson number (do noch change)
370	angfjdsi	1.0D0	general efficiency multiplier for dynamical shaer in- stability
371	angfjshi	1.0D0	general efficiency multiplier for Solberg-Høiland instability
372	angfjssi	1.0D0	general efficiency multiplier for secular shear insta- bility
373	angfjez	1.0D0	general efficiency multiplier for Eddington-Sweet circulation
374	angfjgsf	1.0D0	general efficiency multiplier for Goldreich- Schubert-Fricke instability
375	fmin	1.0D0	under-relaxation factor on the corrections taken each iteration in the Henyey-solver. The maximum number of iteration is now itmax ($p 5$)/fmin.
376	ncnvout	0	write out (1) or not (0) the STERN convection plot file

377	kaptab	1	select opacity table: 0: old 1: OPAL'96 2: OPAL'96 only in H-rich regions 3: Potekhin et al. 2006 (condall06, $10^{-6} < \rho < 10^{9}$) 4: Itoh et al. 2008 ($10^{0} < \rho < 10^{12.8}$) The tables 3 and 4 for are implemented by Laurens Keek for use in thick NS crust models. NOTES: Itoh '08 is officially only valid for liquids ($\Gamma < 180$), but Laurens removed the check for this. Otherwise you revert to the old opacities at the edges of your model, which is probably not any better. Itoh maps isotopes onto 11 isotopes (heaviest is iron); Potekhin uses a mean ion approach.
378 270	fkapz	1.0D0	multiplier on metallicity used in OPAL opacities
379	zīakexp	0.5D0	metallicity-dependence of the mass loss: $\kappa = \kappa_0 \cdot (Z/Z_{\odot})^{\text{zfakexp}}$
			• For non-WR stars all metals (everything but H and He) are considered.
			• For WR stars only the Fe and Ni abundance is considered.
380	angsmt	1.0D0	secular rotational mixing processes may not change by more than that per time-step
381	nangsmg	2	smooth some gradients used for computation of the rotational instabilities over that much grid points on either side. A Gaussian smoothing profile is used
382	angsml	1.0D-3	secular rotational mixing processes may change by at least that fraction for the local zonal diffusion time-scale
383	angsmm	1.0D-3	secular rotational mixing processes may change by at least that fraction of the total diffusion coeffi- cient
384	ipapsize	6120792	paper size in points (inch/72). First 4 digits give width, last 4 digits give height. A value of 0 selects DIN A4 paper size. The default value is letter paper size.

385	hstatxm	1.D99	interior mass coordinate (g) above which hydro- static stratification is assumed
386	hstatym	-1.D99	surface mass coordinate (g) above which hydro-
387	xmlossw	0.0D0	static stratification is assumed multiplier on WR mass loss rate
388	iold	0	set to 1 to use old physics
389	rhotrans	1.0D-7	Some SNIa stuff. Ask Stan.
390	nwndout	0	write out wind data to wind file PROBNAME.wnd every nwndout cycles. Set to zero to turn off.
391	kapverb	0	verbostiy of opacity subroutine. Zero gives no mes-
			sages.
392	xlOlimf	4.0D0	multiplier on limiting flux in radiation flux limiter.
393	xlOlimk	0.0D0	limiting flux multiplied by $\exp\left\{\frac{4\pi \operatorname{rn}^2 \operatorname{xl0limk}}{\kappa \operatorname{xm}}\right\}$.
394	llimout	1	limit to radiative flux of outer zone only if set to 1 (old behavior), otherwise limit to flux of the hotter zone (upper or lower).
395	nenout	0	write out total energies in file PROBNAME.ent every nenout cycles. Set to zero to turn off.
396	ipromin	1	minimum zone for procuction factor/yield plot
397	ipromax	99999	maximum zone for procuction factor/yield plot
398	iprownd	1	take into account wind when computing produc- tion factors/yields if set to 1, ignore if set to 0.

determines the BURN abundance plot type (plot 9). The following plot types are currently supported:

- 0 total decayed mass fractions relative to solar ("production factors") see profmin (p 413) and profmax (p 414)
- 1 decayed isotope masses in solar masse (yield); see proymin (p 402) and proymax (p 403)
- 2 undecayed isotope masses in solar masses (yield) see proymin (p 402) and proymax (p 403)
- 3 decayed isotope mass fraction see proamin (p 415) and proamax (p 416)
- 4 undecayed isotope mass fraction see proamin (p 415) and proamax (p 416)
- 5 elemental decayed production factor relative to solar see profmin (p 413) and profmax (p 414)
- 6 decayed mass of all elements in solar masses (yield) see proymin (p 402) and proymax (p 403)
- 7 decayed mass fraction of all elements see proamin (p 415) and proamax (p 416)
- 101 values in burnamax, undecayed isotope mass draction
- 102 values in burnmax, mass coordiantes
- 103 values in ibcmax, cycle numbers

Stable isotopes are drawn as filled dots, unstable ones a circles.

400 minapro -1000 minimum mass number for production factor/yield plot; automatic determination if set LE -99.

401	maxapro	-1000	maximum mass number for production fac- tor/yield plot; automatic determination if set LE
402	proymin	1.D-10	minimum value for yield in BURN plot types 1, 2 and 6 (iproyld (p 399)). Automatic determi- nation if set to 0.D0. If set to a negative value it forces (negated) this value, even if not required to show the data.
403	proymax	1.D3	maximum value for yield in BURN plot types 1, 2 and 6 (iproyld (p 399)). Automatic determi- nation if set to 0.D0. If set to a negative value it forces (negated) this value, even if not required to show the data.
404	xkdmin	1.d-20	minimum value for density used in subroutine kappa.
405	h1hdep	1.d-2	central hydrogen abundance at which the #hdep dump is made.
406	he4hedep	1.d-2	central helium abundance at which the #hedep dump is made.
407	nenuout	0	cycle frequency used to write enu data file.
408	optconv	2./3.	minimum optical depth below (i.e., outside of) which zone are not allowed to become convective.
409	rloss	1.d99	maximum radius beyon which zones are removed from star (similar to vloss, p 271). Isotope masses are added to the wind arrays, wind and windb.
410	tloss	-1.d99	minimum temperature below which zones are re- moved from star (similar to tloss, p 409). Isotope masses are added to the wind arrays, wind and windb.
411	tapprox	-1.d99	minimum temperature for change to approx net- work. Operates similar to the approx command in link decks.

412	semilan	0.0D0	α efficiency parameter for semiconvection accord- ing to Langer et al. (1983, A&A 126, 207), gen- eralized for general EOS by replacing in Eq. (10) $\nabla_{\rm L} - \nabla$ by $\nabla_{\rm S} - \frac{d\log\rho}{d\log P} (\Gamma_3 - 1)$. For an ideal gas with radiation the second term of the new expres- sion is equal to $\nabla - \frac{\phi}{\delta} \nabla_{\mu}$, giving the original re- altion from Langer et al. (1983). If semilan ≤ 0 the original prescription of Weaver, Zimmerman, & Woosley (1983) is used. Overshooting also is still treated that way.
413	profmin	1.D-4	minimum value for production factor in BURN plot types 0 and 5 (iproyld (p 399)). Automatic determination if set to 0.D0. If set to a negative value it forces (negated) this value, even if not re- quired to show the data.
414	profmax	1.D3	maximum value for production factor in BURN plot types 0 and 5 (iproyld (p 399)). Automatic determination if set to 0.D0. If set to a negative value it forces (negated) this value, even if not re- quired to show the data.
415	proamin	1.D-12	minimum value for the mass fraction BURN plot types 3, 4 and 7 (iproyld (p 399)). Automatic determination if set to 0.D0. If set to a negative value it forces (negated) this value, even if not re- quired to show the data.
416	proamax	1.D3	maximum value for the mass fraction BURN plot types 3, 4 and 7 (iproyld (p 399)). Automatic determination if set to 0.D0. If set to a negative value it forces (negated) this value, even if not re- quired to show the data.
417	yelimb	0.497D0	minimum value of yeburn below which no BURN coprocessing is considered. Use this parameter in conjunction with netmax (p 240).
418	irecb	0	record maximum abundances in BURN network (and save in the restart dumps) if set to 1. See also new plots and terminal commands.

- 419 bmasslow -1.D99 mass coordiante below which no BURN coprocessing is considered. This parameter is automatically changed (increased only) if a zone reaches a Y_e value below yelimb (p 417) (in the APPROX network) or the network number in the APPROX network rises above netmax (p 240). It is then set to just below the upper edger (in interior mass coordiante) of the cell.
- 420 si28dep 1.D-4 central ²⁸Si mass fraction at which the #sidep dump is made, if the mass fractions of ¹⁶O and ⁴He are below 0.01.
- 421 ivspecl 0 version of the special rate set to use. Currently 0 gives the lower limit rate set (as used by Hoffman et al. 2000) and 1 uses the NACRE rate 2 uses the standard rate set plus the upset. per bound of ${}^{22}Ne(\alpha,n)$ and ${}^{22}Ne(\alpha,\gamma)$ (constant 7% BR) as determined by Wischer (Aug 2000). 3 uses the NACRE rate set plus the upper bound of 22 Ne(α ,n) as determined by Rayet et al. (2000). 4 uses the standard rate set plus the CF88 22 Ne(α, γ) and ${}^{22}Ne(\alpha,n)$ rates. 6 uses the standard rate set plus the ²²Ne(α ,n) rate from Jaeger et al. (2001) and the ²²Ne(α, γ) rate lower limit from Kaepeller, i.e. dropping the 633 resonance, and moving the 828 keV resonance to 832 keV with a strength of 118 meV. 8 is same as above, but uses the high limit ²²Ne(α ,n) rate of Jaeger et al. (2001). 10 is same as above, but uses the *lower* limit ${}^{22}Ne(\alpha,n)$ rate of Jaeger et al. (2001). 422 version of the APPROX network rate subroutine 1 ivrate to use. Currently 0 gives the WW95 rate set, 1 uses the rath00 rate set including the $C12(\alpha,\gamma)$ rate form Buchmann et al. (2000) + Buchmann,

priv. comm. (Jul 2000), and 2 uses the NACRE rate set. On restart of older programs a value of 0 is initialized. ivrate values of 3, 4, and 5 use the rath00 rate set but the *adopted*, *high*, and *low* values of Kunz et al. (2002, ApJ). This also selects these rates in the rath00 rate set BURN coprocessing "special" subroutine spec10 (see spec1.f and

specl0.f.)

423	magnet	0	magnetic fields according to Spruit (2001), in prep., are included if set to 1. In this case, in semiconvective regions only the N_{μ}^2 limiting case of Spruit's description is considered. If set to 2, in semiconvective regions the geometric mean be- tween the N_{μ}^2 limiting case and Schwarzschild con- vection is assumed (recommended by Spruit). If set to 3, N_{μ}^2 is multiplied by 0.1. If set to 4 an old buggy case is reproduced in which η_1 does not include the second term in the max statement of equation (36) of Spruit 2002, A&A, 381, 923. If set to 5 an old buggy case is reproduced in which q_1 is missing a factor $(\Omega/N_T)^{1/4}$.
424	nosht	2	convective zones are bound by overshooting layer only of they are at least nosht zones thick. This is to prevent the numerical "spaghetti" instability. Old dumps are restart with the previous standard value of nosht
425	alpth	1.	efficiency factor for thermohaline convection. If set to zero no thermohaline convection is considered. Thermohaline convections occurs in regions with destabilizing composition gradient, but stabilizing temperature gradient (salt finger instability). The implementation in KEPLER is according to Braun (1997, PhD thesis) and Kippenhahn et al. (1980)
426	abarstep	1.d99	no rezoning is performed when the region under consideration contains a step in ABAR of more than abarstep.
427	zbarstep	1.d99	no rezoning is performed when the region under consideration contains a step in ZBAR of more than zbarstep.
428	xmustep	1.d99	no rezoning is performed when the region under consideration contains a step in the mean molec- ular weight, $\mu = ABAR/(1+ZBAR)$ of more than xmustep.
429	netmin	1	minimum APPROX network number until which BURN coprocessing is followed. This is usefull in combination with iburnye so that BURN is still active when switching to QSE.

430	awcorot	-1.0D0	make the outermost ymcorot (p 431) rotate with angular velocity awcorot. Off if $< 0.0D0$.
431	ymcorot	-1.0D0	make the outermost ymcorot totate with angular velocity awcorot (p 430). Off if $< 0.0D0$.
432	nstrout	0	write out structure data every nstrout time steps. No data is written if nstrout is 0
433	mixcycl	0	do mixing at beginning (mixcycl = 1, 2) or at end of cycle (mixcycl = 0; default behavior). mixcycl > 0 is <i>extremely</i> helpful to prevent fatal crashes due do mixing after a too long time step, e.g., off- center burning shells that burn inward. mixcycl = 1 uses always the new time step (dt) for mix- ing, mixcycl = 2 uses the old time step (dtold; magnitude of mixing consistent with mixcycl = 0) for mixing unless a backup occurs, then also the current time-step of the backup cycle (dt) is used. When a backup occurs, the original mass fractions are restored and the star is re-mixed with the new time-step. Effective diffusion coefficients as used for the mixing are stored in the restart dump.
434	lburn	0	substitute BURN network for APPROX network (including energy generation, \bar{A}, \bar{Z}, \ldots) when set to 1. Abundances are mapped to APPROX ab- bundances for plot/edit purposes only.
435	lbbkup	2	This parameter is regulates the behavior of $1burn$. A value of $1bbkup = 1$ enforces only one BURN inversion cycle. If there is a backup in BURN when using LBURN, the cycle will enconter a backup. A value of $1bbkup = 2$ allows backups in BURN but will generate a cycle backup if the maximum num- ber of "negative abundance BURN backups" is ex- ceeded. The old defailt behavior ($1bbkup = 0$) is to allow backups in BURN, but end KEPLER if it en- counters "excess negative abundance BURN back- ups". Since $1bbkup = 2$ does not seem to cause problems, this has been set as the new default value as of 20090716 (KEPLER version 16.79)
436	rlossmin	1.D0	minimum radius for which to apply $vloss$ (p 271).
437	lcout	0	number of outer layes to be written in light curve output file.

438	xmagfmu	1.D0	multiply μ -gradient by this factor.
439	xmagft	1.D0	multiply T -gradient by this factor.
440	xmagfnu	1.D0	multiply eddy viscosity by this factor.
441	xmagfdif	1.D0	multiply eddy diffusivity by this factor.
442	dxncbkup	1.D-7	backup if abundance change vector dy returned from subroutine burn implies a mass non- conservation larger than dxncbkup.
443	iplotb	0	if BURN is used, in abundance plot, PLOT 3, plot BRUN abundaces instead of APPROX/QSE/NSE abundaces. IF set to 1, only plot BURN abunances in the APPROX regime, if set to 2, plot BURN abundances everywhere where BURN is used, i.e., above bmasslow, and if set to 3, plot BURN abun- dances everywhere.
444	minzone	1	Do not rezone the innermost minzone zones. The old default is to not rezone the innermost zone. A value of minzone $= 0$ allows to rezone the innermost zone.
445	zonemmax	1.D99	do not dezone zones bigger than zonemmax.
446	tenubar	-1.D0	electron anti-neutrino temperature (MeV) for core collapse neutrino flux. Use tenu (p 289) instead if tenubar is negative.
447	levcnv	1	number of levels per dex for cnv output file.
448	mingain	-1	log of minimum energy generation (nuclear + neu- trinos) for cnv output file.
449	minloss	-1	log of minimum energy loss (nuclear + neutrinos) for cnv output file.
450	minnucl	-1	log of minimum nuclear energy loss for cnv output file.
451	ddmin	-1.D0	minimum density for dezoning.
452	iazonef	1	allow (1) or disallow (0) adzoning.
453	dynfac	1.D0	multiplier on dynamic time-scale used to deter- mine whether to treat problem (zones) as "dy- namic" or "static" in subroutine update. A value of "0.D0" means that all zones are always treated hydrostatic.
454	h1hburn	0.4	hydrogen mass fraction at which to make the #hburn dump.

455	c12heign	0.01	carbon mass fraction at which to make the #heign dump.
456	he4hebrn	0.5	helium mass fraction at which to make the #heburn dump.
457	zonermin	-1.	minimum zone thickness below which no adzoning is allowed.
458	zonermax	-1.	maximum zone thickness above which no dezoning is allowed.
459	xmixnova	0.	extent (in mass) of a linear composition gradi- ent between substrate and newly accreted ma- terial. The surface material is taken from compsurf/compsurfb, the substrate material from outermost layer of the hydrogen-free core ($X < 10^{-5}$).
460	accmass	0.	set mass of the accreted zones if positive. If negative, the mass of the acceted zone is - $accmass \times totm$ (q 17). If zero the mass of the new zone is that of the current outermost zone. The mass of the new zone is, however, limited to not be different from the outermost zone by more than a factor $accmassf$ (p 461).
461	accmassf	1.4142	The mass of newly accreted zone is may not dif- fer by more than a factor accmassf from the cur- rent outermost zone. In combination with accmass (p 460) this can be used to accrete a "ramp" of changing zone masses. Good either for well re- solved interfaces or fine surface zoning.
462	vinstopm	1.d99	upper mass (g) limit for which infall velocity is checked to determine whether #presn has been reached
463	lowamul	0	minimum mass number for which weak rates are
464	pdmult	1.	multiplier on positron decay/electron capture rate for lowarul (p. 463) < ibwarul (p. 466)
464	edmult	1.	multiplier on electron decay rate for lowamul (p 463) < ibwamul (p 466)
466	ihwamul	0	maximum mass number for which weak rates are
467	kapburn	0	when set to 1 use BURN abundances to compute opacity.

468	fackap	1.	multiply opacity and its derivatives by fackap.
469	awwkloss	1.D99	remove all outer shells that have an angular veloc- ity angwwk times bigger than Keplerian velocity.
470	lossrot	0	if set to 1 use Langer's (1998) formular for rota- tionally enhanced mass loss.
471	ymjkep	-1.d99	reduce angular momentum to keplerian angular momentum in the surface layes down to an exte- rior mass of ymjkep (if it excessed keplerian rota- tion). This is uefule for some accretion problems of for mapping stars with too much rotation into KEPLER, e.g, from merging binaries.
472	maxzone	0	Do not rezone outermost mazxone zones. The implicit default for old runs was 2, which is used when restarting an old run.
473	cfakexp	0.d0	metalicity dependent mass loss scaling with C abundance for cool Pop III stars. If underabun- dant in C and Fe relative to total metallicity, re- duce mass loss by abundance fraction of C+Fe rel- ative to its solar value, to power cfakexp/
474	minnucg	-1	log of minimum nuclear energy generation for cnv output file.
475	mingaind	21	log of minimum energy generation (nuclear + neu- trinos) per cm for cnv output file.
476	minlossd	21	log of minimum energy loss (nuclear $+$ neutrinos) per cm for cnv output file.
477	minnucgd	21	log of minimum nuclear energy generation per cm for cnv output file.
478	minnucld	21	log of minimum nuclear energy loss per cm for cnv output file.
479	tweakmin	0.5	minimum temperature (10^9 K) for weak rates. For some problems, like XRB, this should be set to a lower value.
480	centmult	0.0	Multiplier on simplistic centrifugal force (just use j^2/r^3).
481	mixout	0	write out mixing file every mixout cycles.
482	irprox	1	if 1 use RPROX network when in right tempera- ture and hydrogne mass fraction regime (default); if 0 <i>never</i> use RPROX; if 2 use RPROX network independent of yp mass fraction; if 3 <i>always</i> use rprox network.

483	n14pg	0	If set to one, multiply the first term of the CF88 $N14(p,g)$ rate by 0.54. This is to account for new
484	r3amult	1.	measurements. multiplyer on triple-alphareaction rate. Is used in both APPROX and BURN networks. If -1.D0 use rate by Ogota, fit by Richard Cybert,
485	ibwarn	1	added 20091006. show warning messages for bad rates in subroutine rateb if set to 1 (default) or
486	ifallbk	0	suppress them if set to 0. switch on fallback if > 0. Fallback rate is stored in fbrate (q98) and total fallback mass in fallback (q99). A value of 1 switches on sim- ple outflow condition. A value of 2 switches on pressure matching (experimental)
487	xnumu12	0.0D0	neutrino magnetic moment in units of $10^{-12}\mu_{\rm B}$. Changes neutrino loss rates (only plasma neutrinos for now).
488	nzsave	0	number of older z files to save. They are named $*z1, *z2, \ldots$
489	axion	0.0D0	axion mass in eV. Add energy loss similar to neu- trino loss. The loss rate is proportional to the square of axion.
490	zmhiconv	1.0D99	maximum mass for convection (in g).
491	rnhiconv	1.0D99	maximum radius for convection (in cm).
492	icutbin	1	truncate binary output files on restart/generation if set to 1 (one). This is done at the end of the first time step, before new records are written to the binary output files.
493	nconvers	jmost rec	entersision f the convection output file. This is to al- low compatibility of newer KEPLER versions with older runs - do not change the data file version during the run. Usually you would not want to change the value of this paramter by hand unless you really know what your are doing. PURPOSE: When starting an old run with a newer version of KEPLER, ir will continue to appaned data in the old output format.

494	nunduars	imost rece	proteoregies in the wind output file. This is to al-
494	nwildvers	most rece	low compatibility of newer KEPLER versions with older runs - do not change the data file version during the run. Usually you would not want to change the value of this paramter by hand unless
			you really know what your are doing. PURPOSE:
			KEPLER is will continue to appaned data in the
			old output format.
495	h1hign	1.D-2	mass fraction of ¹ H burnt to write out the #hign
			dump. KEPLER set h1init (q 101) to the ini-
			tial value found at the end of the first time step at
			the center and computes the burnt hydrogen mass
/06	wimp	0.0D0	WIMP mass in CeV WIMP annihilation is dis-
400	wimp	0.0D0	abled if set to 0.00.
497	ipdtmin	0	minimum time between plot outputs in seconds.
			This is useful to limit outpu in interactive mode,
			especially on remote hosts so that the run is not
			slowed down by the graphicalk output.
498	minneug	-1	log of minimum neutrino energy generation (depo- sition?) for cnv output file.
499	minneul	-1	log of minimum neutrino energy loss (deposition?)
			for cnv output file.
500	minneugd	21	log of minimum neutrino energy generation (depo- sition?) per cm for cnv output file.
501	minneuld	21	log of minimum neutrino energy loss per cm for
			cnv output file.
501	minneuld	21	log of minimum neutrino energy loss per cm for
500		1 D 40	cnv output file.
502	wimpsip	1.D-43	spin- <i>in</i> dependent cross section of WIMPs on pro- tons in cm^2
503	wimpsin	1.D-43	spin- <i>in</i> dependent cross section of WIMPs on pro-
000	p ~	1.12 10	tons in cm^2 .
504	wimpsdp	1.D-38	spin-dependent cross section of WIMPs on protons
			in cm ² .
505	wimpsdn	1.D-38	spin-dependent cross section of WIMPs on protons
506	wimprho0	1 D13	m cm ⁻ . WIMP density in GeV/cm ³
507	wimpinou	1.D10 1 D6	WIMP velocity dispersion in cm/s
001	wrmbv0	1.00	

508	wimpvelo	0.D0	velocity of star relative to WIMP dark matter halo in cm/s.
509	iwimpb	1	Use BURN abunances (1) or APPROX abundances (0) for WIMP cross section calculation.
510	angw0	0.D0	angular velocity of the inner angwOm (p 511) mass.
511	angw0m	-1.D0	mass coordinate (not including summ0) for which inner angular velocity angw0 (p 510) is set. A neg- ative value disables setting of inner region angular velocity (default).
512	angjacc	0.D0	specific angular momentum of newly accreted ma- terial.
513	zoneymax	1.D99	do not dezone zones with $xm(i)/ym(i) > zoneymax$.
514	accdepth	0.D0	depth where mass is to be accreted. If set to $0.D0$ zones are accreted at the surface (traditional behavior). If < 0 accrete a zone with mass fraction -accdepth=(ym)/totm0. If > 0 accrete at location accdepth=(ym).
515	pulse051	0.D0	initial pulsar rotational energy in "Bethe" (B). Energy is deposited in the innermost pulsnz (p 517) zones. If set to 0.D0 no pulsar energy depo- sition is implemented. Radioactive ⁵⁶ Ni decay is used instead
516	pulsb15	0.D0	pulsar is the magnetic field in 1×10^{15} Gauss. If set to 0.D0 no pulsar energy deposition is imple- mented. See pulse015 (p 515).
517	nzpuls	10	number of zones over which to distribute pulsar energy. If set to 0 no pulsar energy deposition is implemented. See pulse015 (p 515).
518	fracadz	2.D0	maximum ratio of mass accreting zone before it is forced to adzone.

0 to switch off.

- 1 for average of zone interface values (recommended).
- 2 a simple symmetric scheme that is second order for equidistant zone masses.
- 3 use average gradient and zone center pressure.
- 4 use second-order gradient and zone center pressure.
- 5 for downward differencing (poor choice).
- 6 for upward differencing (poor choice).
- 7 use downward boundary value only (seems sub-optimal choice).
- 8 use upward boundary value only (seems suboptimal choice).
- 520 iacceadv include energy term from advection in accretion. 1 0 to switch off. See losseadv (p 519) for values. 521iaccadv 1 do advection of composition if set to 1. If set to 0, composition is not advected; this can be useful for setting up initial models for accretion problems. 5221.D7 tnumin minimum temperature for neutrino losses if AP-PROX and BURN are not active. 523isurf 0 Do atmosphere model for boundary pressure and temperature if set to 1. *** In development. *** 524nlogout 1 output log file if 1. 5251 do nuclear burning/energy generation. Same use ipnuc of jshell0 and jshell1 as ipup. 526 ipnu 1 do neutrino losses. Same use of jshell0 and jshell1 as ipup. 527 amasslow -1.d99 minimum mass for APPROX network. Similar to bmasslow. 528
 - minimum mass for neutrino losses. Similar to bmasslow.

umasslow

-1.d99

529	idecmode	1	mode for "decretion" model. No decretion if idecmode is 0. If set to 1 decreted mass will be added to decmass (q 130) otherwise to summ0 (p 61). It will always also be added to xmdec (q 129).
530	decrate	0.D0	rate of mass decretion from inner zone. Use accre- tion rate if set to a negative values.
531	fracdec	1.D0	fraction of mass if inner zone for dezoning if in decretion mode.
532	jmdec	1	zone from which to remove mass.
533	lumdata	1	use PROBNAME.lum file for base luminosity. The file contains a comment line with version information, then a line with the number of entries (I6), then the data in two columns: time in seconds and base luminosity xlum0 in erg per second (2E13.6)
534	acctimef	1.d0	multiply accretion time and time scale by this fac- tor for accretion data from a file. This is to simu- late redshift time delay.
535	xlOtimef	1.d0	multiply base luminosity time and time scale by this factor for accretion data from a file. This is to simulate redshift time delay. Usually you would use this in combination with acctimef (p 534)
536	nsekout	0	Write out like file for NuGrid.
537	iadapv	1	Verbosity of adapent output. Be quite of set to 0.
538	ittyv	1	Verbosity of tty output. Be quite of set to 0.
539	ihe4cc	1	switch on charged current neutrino reactions on 4 He if set to 1. This reaction was added to KE-PLEB on 20110317
540	inuenc	1	Switch on neutral current due to electron neutrinos if set to 1. This reaction was added to KEPLER on 20110317 to allow for hard electron neutrinos due to oscillations
541	inuebnc	1	Switch on neutral current due to electron anti- neutrinos if set to 1. This reaction was added to KEPLER on 20110317 to allow for hard electron neutrinos due to oscillations
542	ibdatov	0	allow bdat rates to overwrite any specl#.f rates if set to 1. If set to 0, only rates 21 and 22 will be overwritten. For any other value, at the present, all bdat rates will be overwritten if hard-coded.

543	h1hm2	2.d-2	mass fraction of $^1\mathrm{H}$ burnt to write out the $\#\mathtt{hm2}$
			dump. KEPLER set h1ini (q 101) to the initial
			value found at the end of the first time step at
			the center and computes the burnt hydrogen mass
			fraction relative to that.
544	h1hm5	5.d-2	mass fraction of ${}^{1}\mathrm{H}$ burnt to write out the #hm5
			dump. KEPLER set h1ini (q 101) to the initial
			value found at the end of the first time step at
			the center and computes the burnt hydrogen mass
			fraction relative to that.
545	h1hm10	1.d-1	mass fraction of ¹ H burnt to write out the $\#hm10$
			dump. KEPLER set h1ini (q 101) to the initial
			value found at the end of the first time step at
			the center and computes the burnt hydrogen mass
			fraction relative to that.

Р	name	default	description
87	idzonef	1	value changed to flags: 1: do dezoning; 2: write edits; 4: exit on failure
69	pbound	0.0D0	the boundary pressure from the accretion phan- tom zone is no longer added here. I goes now into pboundac (q 96).
137	bethemt	0.0D0	Disabled and removed. We now use the weak rates from Langanke & Martínez (2000) replaced by nadapb for adaptive BURN network adjustment.
204	abunminx	-1.E-5	Negaive abundance backup now checked for all isotopes in APPROX independent of their abundance. Now only the absolute value of abunminx is considered, i.e., backups are made if and isotope mass fraction is less than $-ABS(abunminx)$.
211	accrate	0.0E0	New: Negative accretion rate now reads in time-dependent accretion rate data from file PROBNAME.acc. The file contains a comment line with version information, then a line with the number of entries (I6), then the data in two columns: time in seconds and accretion rate in grams per second. FORMAT: (2E13.6). The resulting rate is multiplied by -accrate to allow scaling without having to change the file
271	vloss	1.d99	zones exceeding vloss are cut off the surface, keep- ing tbound (p 68) and pbound (p 69). New: the APPROX and BURN isotope masses are added to the "wind" arrays.
313	fmaxmcig	1.d0	reset fmax0 (p 150) to fmaxOcig (p 313) at #cign (tn(1) > tempcig (p 311)) New: unless fmaxOcig (p 313) is 0. or less.
314	fmax0cig	1.d0	reset fmaxm (p 195) to fmaxOcig (p 314) at #cign (tn(1) > tempcig (p 311)) New: unless fmaxmcig (p 314) is 0. or less.

3 Changed Parameters (by value)

4 New Edit ('Q') Parameters

\mathbf{Q}	name	description
78	eninr	initial rotational energy (erg)
79	enr	current rotational energy (erg)
80	anglint	initial angular momentum (erg·sec)
81	anglt	current angular momentum (erg·sec)
82	xmlossr	current mass loss rate (g/sec)
83	zfak	computed metallicity multiplier on mass loss rate
84	enn	total neutrino energy lost from the star (erg)
85	enpist	total energy input by the piston (erg)
86	enpistd	energy input rate by the piston (erg/sec)
87	capeff	opacity at effective radius (cm^2/g)
88	xmlost	mass lost in the "wind" (g)
89	radconv	radius (cm) outside of which no convection is allowed. This value is determined using optconv (p 408).
90	zninvl	number of BURN matrix inversions in last cycle.
91	ngbkup	number of negative abundance backups in SDOT for AP- PROX network
92	mncbkup	number mass non-conservation backups in SDOT for AP- PROX network
93	nacbkup	number of excess abundance change backups in SDOT for APPROX network
94	isebkup	number if ISE non-convergence backups in SDOT
95	enhd	rate of change of thermal ("heat") energy content = $\int_0^M c_V(T(m,t)) (T(m,t) - T(m,t - \Delta t)) dm / \Delta t.$
96	pboundac	boundary pressure due to accretion; this is not added to pbound any longer
97	velnegm	This quantity is for fallback test only. Stores the maximum mass coordinate for which negative velocities occurred instead matter moving outward 1000 km/s or faster. This edit quantity can be reset using resetvnm.
98	fbrate	Fallback accretion rate.
99	fallback	Total fallback mass.
100	ncycr	Cycle of problem generation or last restart.

101	h1init	Initial central hydrogen mass fraction. This is set to the cen- tral value at the end of the time step if the present value of
		h1init is less then -0.5.
102	enrd	Change of rotational energy during last (?) step.
103	ilastpl	"Time-of-day" seconds of last plot. Used <i>internally</i> to limit
		plot outputs in interactive mode.
104	itimeg	time/date when problem was generated
105	itimed	time/date when dump was generated
106	entloss	total energy removed from problems by cutsurf
107	eniloss	internal energy removed from problems by cutsurf
108	enkloss	kinetic energy removed from problems by cutsurf
109	enploss	potential energy removed from problems by cutsurf
110	enrloss	rotational energy removed from problems by cutsurf
111	angloss	total angular momentum removed from problems by cutsurf
112	anglwnd	total angular momentum lost due to wind
113	angit	total momentum of inertia of the star;

$$\int_0^M \frac{2}{3} r^2 \, \mathrm{d}m \approx \frac{2}{5} \sum_{j=1}^{jm} \frac{r_j^5 - r_{j-1}^5}{r_j^3 - r_{j-1}^3} \Delta m_j = \dots$$

$$\dots = \frac{2}{5} \sum_{j=1}^{jm} \frac{r_j^4 + r_j^3 r_{j-1}^1 + r_j^2 r_{j-1}^2 + r_j^1 r_{j-1}^3 + r_{j-1}^4}{r_j^2 + r_j r_{j-1} + r_{j-1}^2} \Delta m_j$$

- 114 wimpcrsi WIMP spin-independent capture rate in 1/s
- 115 wimpersd WIMP spin-dependent capture rate in 1/s
- 116 wimparad WIMP annihilation radius scale in cm
- 117 wimpateq WIMP capture & annihilation equilibrium time scale in s
- 118 wimparat WIMP annihilation rate in s (two WIMPs annihilate in one annihilation "event")
- 119 wimpalum total WIMP annihilation luminosity as computed by WIMP subroutine in erg/s
- 120 eprodw WIMP energy deposition rate in star in erg/s
- 121 eprow total energy deposited in star by WIMP annihilation in erg
- 122 eprodwx WIMP annihilation luminosity *outside* star in erg/s
- 123 eprowx total energy prodoced by wimps OUTSIDE star by WIMP annihilation in erg
- 124 xmacc total amount of mass accreted in g

125	dmacc	mass accreted in last time step in g
126	jloss	mass losing zone
127	jacc	accretion zone
128	delmass	mass lost in last time step in g
129	xmdec	total mass removed from bottom
130	decmass	total mass removed from bottom and not added to substrate
131	dmdec	mass removed in last time step
132	xmacrate	accretion rate
133	he4init	initial ⁴ He
134	zinit	initial metallicity
135	xladv	current advection luminosity

5 New Terminal Commands

fin end exit stop bye quit halt

Because I am tired of having to remember all the different commands for program termination for the different programs all these commands do the same: just terminating.

pulsedit [FILENAME]

write out a pulsation edit file needed by Isabelle Baraffe's and Jeremiah Murphey's code. This file contains several thermodynamical quantities and hard-to-compute derivatives. If no filename *FILENAME* is given the generic name *PROBNAME-CYCLENUMBER* is used.

pulsednr [FILENAME]

write out a pulsation edit file needed by Jeremiah Murphey's code. This file contains several thermodynamical quantities and hard-to-compute derivatives. If no filename *FILENAME* is given the generic name *PROBNAME=CYCLENUMBER* is used.

closewin
closes the graphics window.

kapedit GRID TLOW THI NTEMP DLOW DHI NDENS EPS

makes a kappa edit to the screen. *GRID* is the cell number the composition for evaluation of the opacities is taken from, *TLOW* the lower bound temperature, *THI* the upper bound temperature, *NTEMP* the number of temperature grid points, *DLOW* the lower bound temperature, *DHI* the upper bound temperature, *NDENS* the number of density grid points, and *EPS* the relative change in temperature and density, respectively, used for numerical derivatives. The output is a list of temperature, density, opacity, analytical derivative of the opacity for temperature and density, respectively, numerical derivative of opacity for temperature and density, respectively, and, finally, the deviations between the numerical and analytical determinations of the derivatives.

solidrot

brings the star to solid body rotation.

setspin VALUE [mult — div]

If the optional keyword **mult** is present, multiply the rotation rate the factor *VALUE*, if the optional keyword **div** is present, divide the rotation rate the factor *VALUE*. Otherwise set the **total** angular momentum to *VALUE*, keeping the relative distribution of the angular momentum profile. To enforce rigid rotation afterwards, use the **solidrot** command.

mode

echos whether KEPLER is in interactive mode or not. This is used for an IDL interface I wrote.

datapath [PATH]

sets the "data path" (variable "datapath") where KEPLER looks for data files if they cannot be found in the local directory. If PATH is omitted the current value of "datapath" is displayed. If PATH is set to CLEAR the variable "datapath" is erased. If the environment variable "KEPLER_DATA" is set, KEPLER will also look in the path specified in the variable for data file if they cannot be found in the local directory or the directory specified in "datapath" (if set). This allows for a machine-dependent setting of the data path and is probably the better way in most cases when general/global files are to be used. However, the "datapath" allows to give the location of specialized files (maybe as relative path). In both cases, "datapath" and "KEPLER_DATA" the character "~" (tilde) is replaced by the value of the system variable "HOME", allowing for machine-independent specification of paths.

wind

windb

write the wind / windb data to the screen.

core [COREXLIM [COREFELM]]

writes the different core sizes to the screen. The values given are the shell number (j), interior mass (zm), radius (rn), exterior binding energy (ybind), and total entropy at the core boundary (stot). These values are displayed for the center of the star, the ye-jump (ye drops below 0.49), the boundary of the approx network, the O shell (maximum in energy generation by O burning), the iron core (defined by the mass fraction of heavy elements with mass number > 46 exceeding 1/2), the Si core (Si mass fraction >COREFELM and Si mass fraction bigger than O mass fraction), the Ne/Mg/O core (C mass fraction first drops below COREXLIM and iron is more abundant than COREFELM), the C/O core (He mass fraction first drops below COREXLIM and iron is more abundant than COREFELM), and the helium core (H mass fraction first drops below COREXLIM and iron is more abundant than COREFELM).

copycomp JGRID

copy the composition of shell JGRID into the internal array XNWCOMP.

prncomp

print the internal composition array XNWCOMP.

setcomp IFIRST ABUN1 ABUN2 ...

set the values of the internal composition array XNWCOMP are to ABUN1, $ABUN2 \ldots$, starting with index *IFIRST*. See original documentation for the index/isotope relation.

newnetb FILENAME

generate new BURN network from file *FILENAME*. Currently only the net, netw, p, and c cards are supported. The new network(s) has to include *all* isotopes of the previous network(s)! This command can also be used in aliases and link files.

pf | yd | y | YD | Y | pfe | ye | YE [approx | burn | wind | NSTART [NEND
]]

makes abundance plots according to the command chosen:

- pf production factor of all stable isotopes relative to solar
- Y mass of all isotopes (in solar masses)
- YD decayed mass of all stable isotopes (in solar masses)
- y mass fraction of all isotopes
- yd mass fraction of all stable isotopes
- pfe elemental decayed production factor relative to solar
 - YE decayed mass of all elements (in solar masses)
 - ye decayed mass fraction of all elements

If approx is given everything in the APPROX network plus the wind is summed up. If burn is given everything that is processed by the BURN network, i.e., that has a mass coordinate at the base of the zone bigger than bmasslow (p 419), plus the wind is summed up. If wind is given only the wind is summed up. NSTART and NEND indicate the lower and upper zone number limit for summing abundance. If NEND is not given, it is assumed equal to NSTART; if it is bigger than jm (q 2) the wind data is plotted. Negative values of NSTART and/or NEND indicate zones counted from the surface (i.e., 0 corresponds to the surface zone, -1 to the zone below the surface zone and so forth). If (and only if) NSTART and/or NEND are bigger than jm (q 2; e.g., 99999) the wind is added. So, to see everything in star above a given shell number but excluding the wind, 0 (zero) should be chosen as upper boundary!

killburn

turns off and removes the burn co-processing. inburn and imaxb are set to zero.

burnamax

prints the maximum abundances reached in the BURN network (only if irecb (p 418) is set to 1).

burnaplt

plots the maximum abundances reached in the BURN network.

burnaclr

reset the recording of maximum abundances of BURN network.

arange [NSTART NEND]

set the mass number range for BURN isotope plots. The edit parameters minapro and maxapro are set to the values given. If no values are specified they are set to their default values (-1000).

k

kill

immediately terminates KEPLER without the usual "shutdown logging".

rateb TEMPERATURE DENSITY

edit the BURN reaction rates (here: the sig array) for temperature *TEM-PERATURE* and density *DENSITY*.

ratenub $R9 \ TIME$

edit the BURN neutrino reaction rates (here: the signun and signuc arrays, and some special reaction rates) for radius R9 at time TIME after bounce. If TIME is omitted, 0 is assumed.

weightb TEMPERATURE

edit the BURN statistical weights (here: the ${\tt g}$ and ${\tt w}$ arrays) for temperature TEMPERATURE.

flowb ZONE TEMPERATURE DENSITY TIMESTEP [RADIUS] [FILE-NAME | matrix]

edit the BURN flows, abundances, partition functions, and reaction rates of zone ZONE for temperature TEMPERATURE (in K), density DENSITY (in g cm⁻³), and time step TIMESTEP. For neutrino exposure the radius RADIUS (in cm) is used or 10^{99} cm if omitted. The output is written to the file FILENAME or the screen if omitted. The filename "-" is used to indicate the current log file as output destination. If the flag "matrix" is given, a diagnostic of the non-zero matrix elements is printed to the screen. If TEMPERATURE or DENSITY are set to "-" the current values of zone ZONE are used. If TIMESTEP is set to "-" the new time-step "dtnew (p 1)" is used.

alliso

generates a BURN network that contains *all* isotopes from the **bdat** file (plus $p, n, and {}^{4}He$). Useful for debugging purposes. For real simulations use the adaptive network instead.

edep [STARTZONE [ENDZONE]] DELTA_E

add $DELTA_E$ to zones STARTZONE - ENDZONE. Same code as the det command except that the composition remains unchanged. Same treatment of zone numbers as with the z command.

eostab2 ZONE TLOW THI NTEMP DLOW DHI NRHO

write out EOS table Type II for zone ZONE with NTEMP steps in temperature between TLOW and THI DTEMP steps in density between DLOW DHI. Similar to the eostab2 command, but T, ρ , P, P_T, P_{ρ}, e, e_T, e_{ρ}, κ , and S are tabulated.

mixcycle $\begin{bmatrix} 0 & | 1 \end{bmatrix}$

perform mixing/diffusion operation using current coefficients and new time step (dtnew) if mixcycl (p 433) = 0. If the optional parameter is not set or not zero then the diffusion coefficients are zeroed to prevent additional mixing when the run is continued.

burn DATAFILE

do BURN processing of zone 1 according to history in *DATAFILE*. (not yet implemented)

bstat

output some BURN statistics

![#]

! re-executes the last command. If the number # is specified (no space between the ! and the number) the command issued that many times earlier is re-executed. Currently # must be less than 100, since the history is limited to 100. The history is not saved to restart dumps.

!!

lists the last commands, last command last, and their number in the list to be used with the ! command. The rest of the input line is ignored.

pulsar [PSRMB]

prints out estimated pulsar rotation rate. Optionally, the pulsar baryonic mass (*PSRMB*; in solar masses) can be specified. (may need more documentation)

mapburn

maps BURN abundaces to APPROX in all APPROX zones.

compsurf [ZONE — show | clear | ABUN ion | IDXSTART ABUN1 ... ABUNN]

compsurb [ZONE — show | clear | ABUN ion | IDXSTART ABUN1 ... ABUNN]

set APPROX (compsurf) and BURN (compsurb) accretion abundances.

Without parameter the abundance vector is copied from the outermost zone. Here, compsurf copies only the APPROX abundances whereas compsurb copies only the BURN abundances. IF *ZONE* is specified, zone *ZONE* is used instead if the outermost zone.

If show is specified, the abundance vector is printed to the screen.

If clear is specified, the abundance vector is initialized to zero.

If abundance ABUN and *ion* the abundance of that isotope is set in the abundance vector is set to the specified value.

A series of n subsequent isotopes starting at index IDXSTART in the abundance vector can be set to the values $ABUN1 \dots ABUNN$.

Note that by default the abundances of the outermost zone are copied in the surface composition vectors on problem generation so that, if this is desired, no additional compsurf or compsurb command is required.

resetvnm

resets the edit quantity velnegm to 0.0D0.

adzone ZONE manulally adzone zones ZONE–ZONE+1 to zones ZONE–ZONE+2

dezone ZONE [-] manulally dezone zones ZONE-ZONE+2 to zones ZONE-ZONE+1. If "-" is given, ignore gradient constraints on rejecting dezoning.

cutbin

manually truncate binary output files to current cycle.

х

write out dump file then end KEPLER.

setcycle CYCLE

change cycle number to *CYCLE*. This changes edid quantity ncyc. The edit quantities ncycb and ncycr are also reset. For example, this leads to truncation of the binary log files like *.wnd, *.cnv, etc.

newbin

delete all output files (*.cnv, etc.) and reset all convection plot and wind parameters and version numbers to current default values.

mapsurfb

map compsurfb array to compsurf array.

m VARIABLE [VARIABLE [...]]

same as mon command except that mongo si quit immediately after making the plot.

resetacc

reset accretion q-parameter $(\texttt{xmacc} (q \ 124))$ to 0.D0.

resetdec

reset decretion q-parameters (xmdec (q 129) and decmass (q 130) to 0.D0.

cpzone ZONE_FROM ZONE_TO_LOW ZONE_TO_HIGH [MODE] copy composition from zone reset ZONE_FROM to zone range specified by ZONE_TO_LOW ZONE_TO_HIGH. The optional parameter MODE specifies the adjustment of thermodynamics on the copied zone. Currently all modes by default keep zone density. If *MODE* is skipped, the zone temperatures is not changed. The following values for temperature extrapolation are implemented:

(none) keep temperature

- ct copy temperature
- ita ideal gas temperature extrapolation adiabatic $(\gamma=5/3)$
- rta relativistic gas temperature extrapolation adiabatic ($\gamma=4/3)$
- ltg local gradient temperature extrapolation
- tpn temperature exponent to fit pn(ZONE_TO_LOW)
 - h adjust temperature to get same pressure and density

cnviso ISO_FROM ISO_TO FRACTION ZONE_START ZONE_END convert fraction FRACTION of BURN isotope ISO_FROM to BURN isotope ISO_TO in zones ZONE_START to ZONE_END. NOTE: At this time, this is all that happens; APPROX is not updates, neither is thermodynamics, abar, zbar, etc., so you may want to use it only with small mass fractions.

6 Changed Terminal Commands

p NAME | NUMBER [VALUE [add | + | mul | * | div | / | sub | -]]

p NUMBER1 - NUMBER2

p NUMBER1 .. NUMBER2

p [*]STRING[*]

Display or change parameters. The second and third form print the values of a range of parameters (NUMBER1 may be smaller or larger than NUM-BER2). The third form prints all parameter that contain textslSTRING at the beginning (STRING*), end (*STRING)

q NAME | NUMBER

q NUMBER1 [-|..] NUMBER2

Display edit parameters. The second form prints the values of a range of parameters (*NUMBER1* may be smaller or larger than *NUMBER2*).

z zed v vf ved vfed

The treatment of grid-point numbers has been improved: Grid number 0 counts for the surface, and negative grid numbers are taken to be the corresponding negated grid point counted from the surface of the star. If two numbers are given, they are ordered by size automatically after, after negative grid-point numbers have been reinterpreted – so don't worry to give the upper bound grid-point number first.

z

zed

Instaed of integer grid numbers now floats are accepted as well an interpreted as the interior mass coordinate in units of solar masses.

cutsurf NSURF [+ | -]

Now also adds the mass of the isotopes of the zones "cut off" to the arrays "wind" and "windb". Same for the corresponding link command cutsurf.

If NSURF is negative, the zones -NSURF and above are removed.

The optional argument "-" keeps tbound (p 68) and pbound (p 69) unchanged.

The optional argument "+" keeps just tbound (p 68) unchanged.

editiso

is now prepared to work with arbitrary networks. It reads the solar abundances from the data file *solabu.dat* and the decay data / branch ratios from *decay.dat*. The yields and production factors are now given including the wind and additionally yields and production factors are given for the wind by itself. The data formats of the files *decay.dat* and *solabu.dat* are given at the beginning of the existing sample files.

chngcomp JMIN JMAX [IFIRST ABUN1 ABUN2 ...]

changes the zonal composion of given range. If JMIN or JMAX are integer values (containing no ".") they are interpreted as zone numbers. If they are float values, they are interpreted as mass coordinates (in solar masses). If *IFIRST*, *ABUN1*, *ABUN2* ... are given, the values of the internal composition array XNWCOMP are set to *ABUN1*, *ABUN2* ..., starting with index *IFIRST*. See original documentation for the index/isotope relation. See also addon documentation for copycomp, prncomp, and setcomp.

test $TESTVAR \ J \ T \ D$

is now enhanced to allow the TESTVAR d to print the degeneracy parameter η and its derivatives. J, T, and D are the zone from which the composition is taken, the desired temperature and density, respectively.

mlim

if only one argument is given, the maximum value is set to this and the minimum value to summ0. Then the plot is redone.

<pre>sumi[g sun] [</pre>	[JMIN JMAX] [ISOTOPE]
sumi[g sun] [[ISOTOPE][JMIN JMAX]
sumb[g sun] [[JMIN JMAX] [ISOTOPE]
	TOOTODD [THIN THAN]

sumb[g|sun] [ISOTOPE] [JMIN JMAX]

sums up and prints the total mass of a isotope *ISOTOPE* from zone *JMIN* to zone *JMAX*. sumi sums up isotopes in the APPROX network, sumb sums up isotopes in the BURN network. *ISOTOPE* must not contain a leading "iso" or "ion". If *ISOTOPE* is not given, all isotopes with masses greater than abunlim (p 128) or abunlimb (p 272), respectively, are printed. If *JMIN* and *JMAX* are not given, 1 and jm (q 2) are assumed. If *JMIN* or *JMAX* is less than one, the (unsigned) zone number is counted from the surface, i.e., 0 (zero) corresponds to the surface zone. If *JMIN* or *JMAX* is greater than jm (q 2) the wind is included. Note that *JMIN* and *JMAX* are sorted internally for the bigger and the smaller values, so that they are accepted in arbitrary order. The sumb and sumi forms return mass fractions, the sumbg

and sumig return absolute masses in grams, and the sumbsun and sumisun forms return absolute masses in solar masses.

mix NZMIN NZMAX DELMASS [FLAG]

mix zone by zone from zone *NZMIN* up to zone *NZMAX* over a mass "window" of *DELMASS*. Now also mixes BURN isotopes. If an additional forth parameter is given, pbound (p 68) and tbound (p 69) are not changed.

addsurf [MSURF | NSURF MSURF TEMPSURF RHOSURF VELSURF If no parameter is given, the mass of the current "phantom zone" xmacrete (p 212) will be added as a new zone to the problem and xmacrete (p 212) will be set to zero.

If one parameter is given a mass of this zone will be accreted and xmacrete (p 212) will be reduced by this amount or set to zero if the result is negative. If *five* parameters are given, NMAX zones with total mass of MSURF, temperature TEMPSURF, density RHOSURF and velocity VLESURF will be accreted.

compsurf see new terminal commands

7 Changed Generator Commands

The generator card g has been enhanced in order to allow for the addition of rotation on generation of the problem. The new format is

g ZONE EXTMASS NETW TEMP RHO [OMEGA [VEL]]

where ZONE is the zone number (starting at 0), EXTMASS is the exterior mass coordinate in g, NETW the network number, TEMP the temperature in K, and RHO the density in g/cm³. The argument OMEGA is optional and a default value of 0 is supplied if OMEGA is given for none of the cards. However, if only some are missing, they are interpolated. I.e., to generate an initial model with constant gradient in the rotational velocity (or a rigidly rotating model), only for the innermost and the outermost zone values for OMEGA have to be supplied. The radial velocity is set by the optional argument VEL.

cutsurf see terminal commands.

8 New Generator Commands

linkfile FILENAME

Generate a stellar model from file *FILENAME*. When this command is used, no further generator cards are allowed nor needed. Here should go a description of the file format...

rigidl VALUE

This card allows to give the star the angular momentum VALUE (erg·sec) at startup and distribute it such that the star is rigidly rotating.

bounce JCUT TMIN RMIN RMAX ALPHA [cut] [scut] [accel]

This card generates a piston that moves inward from the outer boundary radius of zone JCUT to the radius RMIN in a time TMIN. The radius as a function of time is fit by a parabola with the initial slope being the velocity at the outer boundary of zone JCUT. After TMIN the piston moves outwards with the (negated) free fall velocity from a point at radius RMAX in a gravitational field that is ALPHA times that of the mass enclosed by the outer boundary of zone JCUT. When the maximum position of the piston is reached, the movement of the piston is stopped.

If the optional keyword cut is given, the innermost JCUT zones are cut away (see cut command). If JCUT is a floating point number, it is interpreted as the Y_e value where to locate the piston. If the keyword scut is set, it is interpreted as the entropy value where to locate the piston. If the keyword accel is set then TMIN is interpreted as the acceleration for the piston infall. The time of bounce than becomes variable. If the piston is generated successfully, tshock (p 343) is set accordingly. This is particularly useful if accel is used

newnetb *FILENAME* see terminal commands.

$\texttt{radlim} \ V\!ALU\!E$

minmum zone thickness relative to radius coordinate. If a zone is thinner, radius and density are adjusted. Default is 1.E-3. Set to zero to keep density unchanged.

rescalem SCALE [msun] [mult | div]

scale the mass coordinate by SCALE. If msun is given the scaling factor is multiplied by M_{\odot}/g . If div is given, the mass coordinate is divided by the scale factor, otherwise it is multiplied by the scale factor. The flag mult has

no effect but must not be given together with div. This command allows to adopt a generator file with a given mass grid to a different mass.

killpist reset/terminate piston.

mapburn see terminal commands.

zonemass [[g]|msun]

generator card give zone mass not mass coordinate. Obviously need to specify all zones. As a backup, for now, the mass of the previous zone will be copied. However, in this case you still need to specify the mass of zone 1. NOTE: "zone 0" mass is ignored. But you may need to give this for velocity and angular velocity interpolation. If the mass unit (g or msun) is omitted, g is the default.

9 New BURN Generator Cards

gg NETW COMP

Sets all zones to BURN network number NETW and BURN composition COMP. Otherwise similar to the g command. The important difference is that now the same generator can be used independent of the number of zone in the problem generator file!

netw NETW EL {ASTART AEND}

Adds the isotopes ASTART - AEND of element EL to BURN network NETW. Several ranges ASTART - AEND can be given in the same line. Otherwise similar to the **net** command.

10 New plots and plotting commands

New plot types are number are (p 113 ipixtype):

- 7 shows the angular velocity (ω) , specific angular momentum (j) and total diffusion coefficient for mixing of chemical species.
- 8 shows the angular velocity (ω) , specific angular momentum (j) contributions of the different rotationally induced mixing coefficients and the total diffusion coefficient for mixing of chemical species.
- 9 shows the production factor/yield for the different isotopes from the BURN co-processing network. Refer to parameters p 396 to p 403 for details of the plot adjustment.

New multiplicities of plots supported are (p 113 ipixtype):

- To get three plots of equal size, placed vertically below each other use the format ABCOO, where A, B, and C are the numbers of the individual plots.
 - To get three plots, the first of which is larger and the other two are smaller, use the format ABC, where A, B, and C are the numbers of the individual plots.
- 4 To get fours plots of equal size, placed in the corners of the window, use the format ABCD, where A, B, C, and D are the numbers of the individual plots.

This is now determined in subroutine setplottype.

New types and handling of y-axis (p 132 irtype):

- 1 log radius (cm)
- 2 interior mass fraction
- 3 interior mass (solar masses)
- 4 radius (cm)
- 5 moment of inertia coordinate $(M_{\odot} R_{\odot}^2)$

- 6 zone number
- 7 log interior mass (M $_{\odot}$) using jp0 and jp1
- 8 interior mass $({\rm M}_\odot)$ using jp0 and jp1
- 9 log exterior mass (M_{\odot}) using jp0 and jp1
- 10 exterior mass (M_{\odot}) using jp0 and jp1
- 11 log column density (g cm⁻²) using jp0 and jp1
- 12 column density $(g \text{ cm}^{-2})$ using jp0 and jp1
- 13 pressure (erg cm^{-3}) using jp0 and jp1
- 14 log pressure (erg $\rm cm^{-3}$) using jp0 and jp1
- 15 (non-relativistic) gravitational potential (cm $^2~{\rm s}^{-2})$ using jp0 and jp1
- 16 log (non-relativistic) gravitational potential (cm² s⁻²) using jp0 and jp1
- 17 normalized (non-relativistic) gravitational potential (c²) using jp0 and jp1
- 18 log normalized (non-relativistic) gravitational potential (c²) using jp0 and jp1
- 19 gravitational redshift using jp0 and jp1
- 20 log gravitational redshift using jp0 and jp1
- 21 enclosed volume (cm^3) using jp0 and jp1
- 22 log enclosed volume (cm^3) using jp0 and jp1
- 23 enclosed volume (R^3_{\odot}) using jp0 and jp1
- 24 log enclosed volume (R^3_{\odot}) using jp0 and jp1

Notes:

For y-axis types 2 and 3 the diffusion coefficients in plot types 7 and 8 are shown in mass units, as it is most useful for investigating mixing of chemical species, for y-axis types 1 and 4 they are radius mass units, and for y-axis type 5 they are given in moment of inertia coordinates, as it is most useful if transport of angular momentum is considered.

For flot types 9 - 12 the surface of the star is to the left.

11 New Edit Quantities

name	description
angj	specific angular momentum (erg·sec)
angi	specific moment of inertia (cm^2)
angw	angular velocity $(1/s)$
angv	rotational velocity (cm/s)
ange	specific rotational energy (erg/g)
angp	rotational period (s)
angvk	Keplerian rotational velocity (cm/s)
gamed	Eddington Gamma
angwc	critical angular velocity $(1/s)$
angwwc	angular velocity / critical velocity
angvvc	rotational velocity / critical velocity
angwk	Keplerian angular velocity $(1/s)$
angek	specific Keplerian energy (erg/g)
angwwk	angular velocity / Keplerian velocity
angvvk	rotational velocity / Keplerian velocity
angeek	rotational energy / Keplerian energy
stotd	old specific entropy $(erg/g/K)$
eg	specific gravitational energy generation rate $(erg/g/s)$
gamma1	adiabatic exponent Γ_1
gamma2	adiabatic exponent Γ_2
gamma3	adiabatic exponent Γ_3
enbtn	$(\partial \text{ en } / \partial \text{ tn })_{dn} \text{ (erg/g/K)}$
enbdn	$(\partial \text{ en } / \partial \text{ dn })_{\text{tn}} (\text{erg cm}^3 \text{ g}^{-2})$
pnbtn	$(\partial \text{ pn } / \partial \text{ tn })_{\text{dn}} (\text{dyn/K})$
pnbdn	$(\partial \text{ pn } / \partial \text{ dn })_{\text{tn}} (\text{dyn } \text{cm}^3/\text{g})$
angri	Richardson number
angdg	total rotational diffusion coefficient (cm^2/s)
angd0	diffusion coefficient for convective processes (cm^2/s)
angd1	diffusion coefficient for dynamical shear instability (cm^2/s)
angd2	diffusion coefficient for Solberg-Høiland instability $(\rm cm^2/s)$
angd3	diffusion coefficient for secular shear instability (cm^2/s)

angd4	diffusion coefficient for Eddington-Sweet circulation (cm^2/s)
angd5	diffusion coefficient for Goldreich-Schubert-Fricke instability (cm^2/s)
mu	mean molecular weight (g/mol)
tau	optical depth
zm	interior mass coordinate (g)
xbind	binding energy of zone (erg)
ybind	exterior binding energy (erg)
zbind	interior binding energy (erg)
uesc	local escape velocity w/r layers below (cm/sec)
magvcc	arsinh(mag. VC criterion*1.17) according to Henk Spruit (ask him for details)
snt	∂ sn / ∂ T (erg/g/s/K)
snd	$\partial \mathrm{sn} / \partial \rho (\mathrm{erg} \mathrm{cm}^3/\mathrm{g}^2/\mathrm{s})$
sneut	sneut $(erg/g/s)$
sneutbt	∂ sneut / ∂ T (erg/g/s/K)
sneutbd	∂ sneut / $\partial \rho$ (erg cm ³ /g ² /s)
snuc	snuc $(erg/g/s)$
snucbt	∂ snuc / ∂ T (erg/g/s/K)
snucbd	$\partial \text{ snuc } / \partial \rho \text{ (erg cm}^3/\text{g}^2/\text{s)}$
snuw	snuw $(erg/g/s)$
snuwbt	∂ snuw / ∂ T (erg/g/s/K)
snuwbd	∂ snuw / $\partial \rho$ (erg cm ³ /g ² /s)
snubps	snubps $(erg/g/s)$
snubpsbt	∂ snubps / ∂ T (erg/g/s/K)
snubpsbd	∂ snubps / ∂ ρ (erg cm ³ /g ² /s)
snlt	$\partial \ln \operatorname{sn} / \partial \ln T$
snld	$\partial \ln \operatorname{sn} / \partial \ln \rho$
sneutlt	$\partial \ln \text{sneut} / \partial \ln T$
sneutld	$\partial \ln \text{sneut } / \partial \ln \rho$
snuclt	$\partial \ln \operatorname{snuc} / \partial \ln T$
snucld	$\partial \ln \operatorname{snuc} / \partial \ln \rho$
snuwlt	$\partial \ln$ snuw / $\partial \ln T$
snuwld	$\partial \ln$ snuw / $\partial \ln \rho$

snubpslt	∂ l n snubps / ∂ ln T
snubpsld	∂ l n snubps / ∂ ln ρ
xmag	magnetic quantities (Spruit 2002)

12 New Variables

which are saved to the restart dump file:

name	description
angj	array(0:jmz)
	specific angular momentum (erg·sec)
angdg	array(0:jmz)
	total rotationally induced diffusion coefficients (cm^2/sec)
angd	array(0:jmz,1:nangmd)
	rotational diffusion coefficients separated for processes (cm^2/sec)
	1: dynamical shear instability
	2: Solberg-Høiland instability
	3: secular shear instability
	4: Eddington-Sweet circulation
	5: Goldreich-Schubert-Fricke instability
datapath	$CHARACTER^*(80)$
	contains a search path for data files
wind	array(nitz)
	stores the APPROX abundances removed from the star
windb	array(nitzb)
burnamax	stores the BURN abundances removed from the star array(nburn)
	stores the maximum abundances reached in the BURN net-
	work
burnmmax	array(nburn)
	stores the mass coordiantes where the maximum abundances
	in the BURN network were reached
ibcmax	array(nburn)
	stores the cycle numbers of when the maximum abundances
	in the BURN network were reached

13 New auto-linked aliases

hdep

execued when central hydrogen drops below 1%.

hedep

execued when central helium drops below 1%.

&

executed after each cycle.

hburn

executed half way through hydrogen burning.

heburn

executed half way through helium burning

14 All New: Environment Variables

KEPLER_DATA

sets the "data path" (see also: variable "datapath") where KEPLER looks for data files if they cannot be found in the local directory.

If the environment variable "KEPLER_DATA" is set, KEPLER will look in the path specified in the variable for data files if they cannot be found in the local directory or the directory specified in "datapath" (if set). This allows for a machine-dependent setting of the data path and is probably the best way in most cases when general/global files are to be used. The character "~" (tilde) is replaced by the value of the system variable "HOME", better utilizing the machine-independent specification of paths.

KEPLER_MAIL

KEPLER_USER

If both variables are set, KEPLER will send an email to the address specified in KEPLER_USER using the mail program specified in KEPLER_MAIL when it terminates. Useful when several instances of KEPLER are run simultaneously.

15 MONGO Environment Variables

FONTDAT where to find fonts.dat

FONTNEW where to find fonts.vis

HELPFILE where to find help.dat

MONGOPS where to find MONGO postscript files.

Sample code for tcsh

setenv FONTDAT \$HOME/kepler/mongo_dp64/fonts.dat
setenv FONTNEW \$HOME/kepler/mongo_dp64/fonts.vis
setenv HELPFILE \$HOME/kepler/mongo_dp64/help.dat
setenv MONGOPS \$HOME/kepler/mongo_dp64/postscript/

16 Changed OS/Startup Commands

z?

now in addition to z also $z1{-}z9$ will star up dumps with that ending.

k

will not load BURN data and kill burning, similar to the $\tt kill burn$ command.

#*

will star from labeled dump with same base name.

*g, *z, *#*

will separate out base name for run automatically.